import cv2 from loguru import logger from lama_cleaner.helper import download_model from lama_cleaner.plugins.base_plugin import BasePlugin class GFPGANPlugin(BasePlugin): name = "GFPGAN" def __init__(self, device, upscaler=None): super().__init__() from .gfpganer import MyGFPGANer url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" model_md5 = "94d735072630ab734561130a47bc44f8" model_path = download_model(url, model_md5) logger.info(f"GFPGAN model path: {model_path}") import facexlib if hasattr(facexlib.detection.retinaface, "device"): facexlib.detection.retinaface.device = device # Use GFPGAN for face enhancement self.face_enhancer = MyGFPGANer( model_path=model_path, upscale=1, arch="clean", channel_multiplier=2, device=device, bg_upsampler=upscaler.model if upscaler is not None else None, ) self.face_enhancer.face_helper.face_det.mean_tensor.to(device) self.face_enhancer.face_helper.face_det = ( self.face_enhancer.face_helper.face_det.to(device) ) def __call__(self, rgb_np_img, files, form): weight = 0.5 bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR) logger.info(f"GFPGAN input shape: {bgr_np_img.shape}") _, _, bgr_output = self.face_enhancer.enhance( bgr_np_img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight, ) logger.info(f"GFPGAN output shape: {bgr_output.shape}") # try: # if scale != 2: # interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 # h, w = img.shape[0:2] # output = cv2.resize( # output, # (int(w * scale / 2), int(h * scale / 2)), # interpolation=interpolation, # ) # except Exception as error: # print("wrong scale input.", error) return bgr_output def check_dep(self): try: import gfpgan except ImportError: return ( "gfpgan is not installed, please install it first. pip install gfpgan" )