import gc import PIL.Image import cv2 import numpy as np import torch from diffusers import ControlNetModel from loguru import logger from lama_cleaner.model.base import DiffusionInpaintModel from lama_cleaner.model.utils import torch_gc, get_scheduler from lama_cleaner.schema import Config class CPUTextEncoderWrapper: def __init__(self, text_encoder, torch_dtype): self.config = text_encoder.config self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) self.torch_dtype = torch_dtype del text_encoder torch_gc() def __call__(self, x, **kwargs): input_device = x.device return [ self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] .to(input_device) .to(self.torch_dtype) ] @property def dtype(self): return self.torch_dtype NAMES_MAP = { "sd1.5": "runwayml/stable-diffusion-inpainting", "anything4": "Sanster/anything-4.0-inpainting", "realisticVision1.4": "Sanster/Realistic_Vision_V1.4-inpainting", } NATIVE_NAMES_MAP = { "sd1.5": "runwayml/stable-diffusion-v1-5", "anything4": "andite/anything-v4.0", "realisticVision1.4": "SG161222/Realistic_Vision_V1.4", } def make_inpaint_condition(image, image_mask): """ image: [H, W, C] RGB mask: [H, W, 1] 255 means area to repaint """ image = image.astype(np.float32) / 255.0 image[image_mask[:, :, -1] > 128] = -1.0 # set as masked pixel image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image def load_from_local_model( local_model_path, torch_dtype, controlnet, pipe_class, is_native_control_inpaint ): from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( download_from_original_stable_diffusion_ckpt, ) logger.info(f"Converting {local_model_path} to diffusers controlnet pipeline") try: pipe = download_from_original_stable_diffusion_ckpt( local_model_path, num_in_channels=4 if is_native_control_inpaint else 9, from_safetensors=local_model_path.endswith("safetensors"), device="cpu", load_safety_checker=False, ) except Exception as e: err_msg = str(e) logger.exception(e) if is_native_control_inpaint and "[320, 9, 3, 3]" in err_msg: logger.error( "control_v11p_sd15_inpaint method requires normal SD model, not inpainting SD model" ) if not is_native_control_inpaint and "[320, 4, 3, 3]" in err_msg: logger.error( f"{controlnet.config['_name_or_path']} method requires inpainting SD model, " f"you can convert any SD model to inpainting model in AUTO1111: \n" f"https://www.reddit.com/r/StableDiffusion/comments/zyi24j/how_to_turn_any_model_into_an_inpainting_model/" ) exit(-1) inpaint_pipe = pipe_class( vae=pipe.vae, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, unet=pipe.unet, controlnet=controlnet, scheduler=pipe.scheduler, safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) del pipe gc.collect() return inpaint_pipe.to(torch_dtype=torch_dtype) class ControlNet(DiffusionInpaintModel): name = "controlnet" pad_mod = 8 min_size = 512 def init_model(self, device: torch.device, **kwargs): fp16 = not kwargs.get("no_half", False) model_kwargs = { "local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) } if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): logger.info("Disable Stable Diffusion Model NSFW checker") model_kwargs.update( dict( safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) ) use_gpu = device == torch.device("cuda") and torch.cuda.is_available() torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 sd_controlnet_method = kwargs["sd_controlnet_method"] self.sd_controlnet_method = sd_controlnet_method if sd_controlnet_method == "control_v11p_sd15_inpaint": from diffusers import StableDiffusionControlNetPipeline as PipeClass self.is_native_control_inpaint = True else: from .pipeline import StableDiffusionControlNetInpaintPipeline as PipeClass self.is_native_control_inpaint = False if self.is_native_control_inpaint: model_id = NATIVE_NAMES_MAP[kwargs["name"]] else: model_id = NAMES_MAP[kwargs["name"]] controlnet = ControlNetModel.from_pretrained( f"lllyasviel/{sd_controlnet_method}", torch_dtype=torch_dtype ) self.is_local_sd_model = False if kwargs.get("sd_local_model_path", None): self.is_local_sd_model = True self.model = load_from_local_model( kwargs["sd_local_model_path"], torch_dtype=torch_dtype, controlnet=controlnet, pipe_class=PipeClass, is_native_control_inpaint=self.is_native_control_inpaint, ) else: self.model = PipeClass.from_pretrained( model_id, controlnet=controlnet, revision="fp16" if use_gpu and fp16 else "main", torch_dtype=torch_dtype, **model_kwargs, ) # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing self.model.enable_attention_slicing() # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention if kwargs.get("enable_xformers", False): self.model.enable_xformers_memory_efficient_attention() if kwargs.get("cpu_offload", False) and use_gpu: logger.info("Enable sequential cpu offload") self.model.enable_sequential_cpu_offload(gpu_id=0) else: self.model = self.model.to(device) if kwargs["sd_cpu_textencoder"]: logger.info("Run Stable Diffusion TextEncoder on CPU") self.model.text_encoder = CPUTextEncoderWrapper( self.model.text_encoder, torch_dtype ) self.callback = kwargs.pop("callback", None) def forward(self, image, mask, config: Config): """Input image and output image have same size image: [H, W, C] RGB mask: [H, W, 1] 255 means area to repaint return: BGR IMAGE """ scheduler_config = self.model.scheduler.config scheduler = get_scheduler(config.sd_sampler, scheduler_config) self.model.scheduler = scheduler if config.sd_mask_blur != 0: k = 2 * config.sd_mask_blur + 1 mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] img_h, img_w = image.shape[:2] if self.is_native_control_inpaint: control_image = make_inpaint_condition(image, mask) output = self.model( prompt=config.prompt, image=control_image, height=img_h, width=img_w, num_inference_steps=config.sd_steps, guidance_scale=config.sd_guidance_scale, controlnet_conditioning_scale=config.controlnet_conditioning_scale, negative_prompt=config.negative_prompt, generator=torch.manual_seed(config.sd_seed), output_type="np.array", callback=self.callback, ).images[0] else: if "canny" in self.sd_controlnet_method: canny_image = cv2.Canny(image, 100, 200) canny_image = canny_image[:, :, None] canny_image = np.concatenate( [canny_image, canny_image, canny_image], axis=2 ) canny_image = PIL.Image.fromarray(canny_image) control_image = canny_image elif "openpose" in self.sd_controlnet_method: from controlnet_aux import OpenposeDetector processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") control_image = processor(image, hand_and_face=True) elif "depth" in self.sd_controlnet_method: from transformers import pipeline depth_estimator = pipeline("depth-estimation") depth_image = depth_estimator(PIL.Image.fromarray(image))["depth"] depth_image = np.array(depth_image) depth_image = depth_image[:, :, None] depth_image = np.concatenate( [depth_image, depth_image, depth_image], axis=2 ) control_image = PIL.Image.fromarray(depth_image) else: raise NotImplementedError( f"{self.sd_controlnet_method} not implemented" ) mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L") image = PIL.Image.fromarray(image) output = self.model( image=image, control_image=control_image, prompt=config.prompt, negative_prompt=config.negative_prompt, mask_image=mask_image, num_inference_steps=config.sd_steps, guidance_scale=config.sd_guidance_scale, output_type="np.array", callback=self.callback, height=img_h, width=img_w, generator=torch.manual_seed(config.sd_seed), controlnet_conditioning_scale=config.controlnet_conditioning_scale, ).images[0] output = (output * 255).round().astype("uint8") output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output def forward_post_process(self, result, image, mask, config): if config.sd_match_histograms: result = self._match_histograms(result, image[:, :, ::-1], mask) if config.sd_mask_blur != 0: k = 2 * config.sd_mask_blur + 1 mask = cv2.GaussianBlur(mask, (k, k), 0) return result, image, mask @staticmethod def is_downloaded() -> bool: # model will be downloaded when app start, and can't switch in frontend settings return True