def test_load_model(): from lama_cleaner.plugins import InteractiveSeg from lama_cleaner.model_manager import ModelManager interactive_seg_model = InteractiveSeg('vit_l', 'cpu') models = [ "lama", "ldm", "zits", "mat", "fcf", "manga", ] for m in models: ModelManager( name=m, device="cpu", no_half=False, hf_access_token="", disable_nsfw=False, sd_cpu_textencoder=True, sd_run_local=True, local_files_only=True, cpu_offload=True, enable_xformers=False, ) # def create_empty_file(tmp_dir, name): # tmp_model_dir = os.path.join(tmp_dir, "torch", "hub", "checkpoints") # Path(tmp_model_dir).mkdir(exist_ok=True, parents=True) # path = os.path.join(tmp_model_dir, name) # with open(path, "w") as f: # f.write("1") # # # def test_load_model_error(): # MODELS = [ # ("big-lama.pt", "e3aa4aaa15225a33ec84f9f4bc47e500"), # ("cond_stage_model_encode.pt", "23239fc9081956a3e70de56472b3f296"), # ("cond_stage_model_decode.pt", "fe419cd15a750d37a4733589d0d3585c"), # ("diffusion.pt", "b0afda12bf790c03aba2a7431f11d22d"), # ] # with tempfile.TemporaryDirectory() as tmp_dir: # os.environ["XDG_CACHE_HOME"] = tmp_dir # for name, md5 in MODELS: # create_empty_file(tmp_dir, name) # test_load_model()