Spaces:
Runtime error
Runtime error
File size: 16,660 Bytes
440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef 028ac25 440deef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from langchain import FAISS
from langchain import LLMMathChain
from langchain.agents import AgentType, create_csv_agent
from langchain.chains import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.tools import Tool
import utils
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
class GraderQA:
def __init__(self, grader, embeddings):
self.grader = grader
self.llm = self.grader.llm
self.folder_path = "vector_stores/"
self.summary_index_name = "canvas-discussions-summary"
self.summary_index_file = "vector_stores/canvas-discussions-summary.faiss"
self.summary_pickle_file = "vector_stores/canvas-discussions-summary.pkl"
self.qa_index_name = "canvas-discussions-qa"
self.qa_index_file = "vector_stores/canvas-discussions-qa.faiss"
self.qa_pickle_file = "vector_stores/canvas-discussions-qa.pkl"
self.summary_docs = utils.get_csv_files(self.grader.csv, source_column='student_name')
self.qa_docs = utils.get_csv_files(self.grader.csv, source_column='student_name',
field_names=['student_name', 'total_score', 'score_breakdown'])
self.rubric_text = grader.rubric_text
self.summary_index = self.get_search_index(embeddings)
self.qa_index = self.get_qa_index(embeddings)
self.chain = self.create_chain(embeddings)
self.qa_chain = self.create_qa_chain()
self.math_chain = self.create_math_chain()
self.tools = self.get_tools()
self.memory = ConversationBufferMemory(memory_key='chat_history',
return_messages=True,
output_key='answer')
self.agent = self.create_agent()
self.tokens = None
self.question = None
def load_all_indexes(self, embeddings):
return self.get_search_index(embeddings), self.get_qa_index(embeddings)
def get_search_index(self, embeddings):
if utils.index_exists(self.summary_pickle_file, self.summary_index_file):
# Load index from pickle file
search_index = utils.load_index(self.folder_path, self.summary_index_name, embeddings)
else:
search_index = utils.create_index(self.folder_path, self.summary_index_name, embeddings, self.summary_docs)
print("Created index")
return search_index
def get_qa_index(self, embeddings):
if utils.index_exists(self.qa_pickle_file, self.qa_index_file):
# Load index from pickle file
search_index = utils.load_index(self.folder_path, self.qa_index_name, embeddings)
else:
search_index = utils.create_index(self.folder_path, self.qa_index_name, embeddings, self.qa_docs)
print("Created index")
return search_index
def create_chain(self, embeddings):
if not self.summary_index:
self.summary_index = self.get_search_index(embeddings)
question_prompt, combine_prompt = self.create_map_reduce_prompt()
# create agent, 1 chain for summary based question, 2nd chain for semantic retrieval based question
qa_chain = load_qa_chain(self.llm, chain_type="map_reduce", question_prompt=question_prompt,
combine_prompt=combine_prompt, verbose=True)
chain = RetrievalQA(combine_documents_chain=qa_chain,
retriever=self.summary_index.as_retriever(search_type='mmr',
search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
'k': 30}),
return_source_documents=True, verbose=True, )
return chain
def create_qa_chain(self):
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff",
retriever=self.qa_index.as_retriever(search_type='mmr',
search_kwargs={'lambda_mult': 1,
'fetch_k': 50,
'k': 30}), verbose=True)
return qa
def create_math_chain(self):
return LLMMathChain.from_llm(llm=self.llm, verbose=True)
def get_tools(self):
tools = [
Tool(
name="Grading Score Results",
func=self.run_qa_chain,
description="useful when you need to answer questions related to GRADES, SCORING or SCORE BREAKDOWN(INDIVIDUAL OR OVERALL) based questions from the grading results of the canvas discussion. Use this more often because this has a higher accuracy about the SCORING and GRADES of the students."
),
Tool(
name="Summary",
func=self.run_summary_chain,
description="useful when you need to answer summary based questions for all students' grading results for the canvas discussion where the question is complicated and ONLY WHEN the answer is not directly available in the grading score results"
),
Tool(
name="Calculator",
func=self.run_math_chain,
description="Useful for when you need to compute mathematical expressions"
)
]
return tools
def create_agent(self):
# Initialize a Conversational Agent with the existing chain as a tool
# planner = load_chat_planner(self.llm)
#
# # agent = initialize_agent(self.tools, self.llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=self.memory)
# executor = load_agent_executor(self.llm,self.tools, verbose=True)
#
#
# agent = PlanAndExecute(planner=planner, executor=executor, verbose=True)
# agent = initialize_agent(
# self.tools, self.llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
# )
agent = create_csv_agent(
self.llm,
self.grader.csv,
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
return agent
def create_map_reduce_prompt(self):
system_template = f"""Use the following student's grading result document to answer a summary based question. The question will always be related to the overall grading results, feedback, score, summary of student responses for the discussion. But the answer will ALWAYS be specific to the student based on the question. There are examples to help you understand how to answer the question.
______________________
Grading Result For:
{{context}}
______________________
Use the following examples to take guidance on how to answer the question.
Examples:
Question: How many students participated in the discussion?
Rephrased question: Did this student participate in the discussion?
Answer: This student participated in the discussion./This student did not participate in the discussion.
Question: What was the average score for the discussion?
Rephrased question: What was the score for this student for the discussion?
Answer: This student received a score of 10/10 for the discussion.
Question: How many students received a full score?/How many students did not receive a full score?
Rephrased question: Did this student receive a full score?
Answer: This student received a full score./This student did not receive a full score.
Question: How many students lost marks in X category of the rubric?
Rephrased question: Did this student lose marks in X category of the rubric?
Answer: This student lost marks in X category of the rubric./This student did not lose marks in X category of the rubric.
Question: Give me 3 best responses received for the discussion.
Rephrased question: What were the 3 best responses received for the discussion?
Answer: This student gave the following responses for the discussion and received a score of 10/10.
______________________
"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
Use the following answers for each student to answer the users question as accurately as possible.
You are an expert at basic calculations and answering questions on grading results and can answer the following questions with ease.
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
______________________
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages)
return CHAT_QUESTION_PROMPT, CHAT_COMBINE_PROMPT
def create_prompt(self):
system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
You are a grading assistant who graded the canvas discussions to create the following grading results and feedback.
Use the following instruction, rubric of the discussion which were used to grade the discussions and refine the answer if needed.
----------------
{self.rubric_text}
----------------
Use the following pieces of the grading results, score, feedback and summary of student responses to answer the users question as accurately as possible.
{{context}}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
return ChatPromptTemplate.from_messages(messages)
def get_tokens(self):
total_tokens = 0
# for doc in self.docs:
# chat_prompt = self.prompt.format(context=doc, question=self.question)
#
# num_tokens = self.llm.get_num_tokens(chat_prompt)
# total_tokens += num_tokens
# summary = self.llm(summary_prompt)
# print (f"Summary: {summary.strip()}")
# print ("\n")
return total_tokens
def run_qa_chain(self, question):
self.question = question
self.get_tokens()
answer = self.qa_chain.run(question)
return answer
def run_summary_chain(self, question):
self.question = question
self.get_tokens()
answer = self.chain(question)
return answer
def run_math_chain(self, question):
self.question = question
self.get_tokens()
answer = self.math_chain.run(question)
return answer
def search_index_from_docs(source_chunks, embeddings):
# print("source chunks: " + str(len(source_chunks)))
# print("embeddings: " + str(embeddings))
search_index = FAISS.from_documents(source_chunks, embeddings)
return search_index
# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
# Use the following pieces of context to answer the users question.
# ----------------
# {context}"""
#
# messages = [
# SystemMessagePromptTemplate.from_template(system_template),
# HumanMessagePromptTemplate.from_template("{question}"),
# ]
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
#
#
# def get_search_index(embeddings):
# global vectorstore_index
# if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
# # Load index from pickle file
# search_index = load_index(embeddings)
# else:
# search_index = create_index(model)
# print("Created index")
#
# vectorstore_index = search_index
# return search_index
#
#
# def create_index(embeddings):
# source_chunks = create_chunk_documents()
# search_index = search_index_from_docs(source_chunks, embeddings)
# # search_index.persist()
# FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
# # Save index to pickle file
# # with open(pickle_file, "wb") as f:
# # pickle.dump(search_index, f)
# return search_index
#
#
# def search_index_from_docs(source_chunks, embeddings):
# # print("source chunks: " + str(len(source_chunks)))
# # print("embeddings: " + str(embeddings))
# search_index = FAISS.from_documents(source_chunks, embeddings)
# return search_index
#
#
# def get_html_files():
# loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
# document_list = loader.load()
# for document in document_list:
# document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
# return document_list
#
#
# def get_text_files():
# loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
# document_list = loader.load()
# return document_list
#
#
# def create_chunk_documents():
# sources = fetch_data_for_embeddings()
#
# splitter = RecursiveCharacterTextSplitter.from_language(
# language=Language.HTML, chunk_size=500, chunk_overlap=0
# )
#
# source_chunks = splitter.split_documents(sources)
#
# print("chunks: " + str(len(source_chunks)))
# print("sources: " + str(len(sources)))
#
# return source_chunks
#
#
# def create_chain(question, llm, embeddings):
# db = load_index(embeddings)
#
# # Create chain
# chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
# search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
# 'k': 30}),
# return_source_documents=True,
# verbose=True,
# memory=ConversationSummaryBufferMemory(memory_key='chat_history',
# llm=llm, max_token_limit=40,
# return_messages=True,
# output_key='answer'),
# get_chat_history=get_chat_history,
# combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
#
# result = chain({"question": question})
#
# sources = []
# print(result)
#
# for document in result['source_documents']:
# sources.append("\n" + str(document.metadata))
# print(sources)
#
# source = ',\n'.join(set(sources))
# return result['answer'] + '\nSOURCES: ' + source
#
#
# def load_index(embeddings):
# # Load index
# db = FAISS.load_local(
# folder_path="vector_stores/",
# index_name="canvas-discussions", embeddings=embeddings,
# )
# return db
#
#
# def get_chat_history(inputs) -> str:
# res = []
# for human, ai in inputs:
# res.append(f"Human:{human}\nAI:{ai}")
# return "\n".join(res)
|