Spaces:
Runtime error
Runtime error
import asyncio | |
import glob | |
import os | |
import shutil | |
import time | |
import traceback | |
import pandas as pd | |
import utils | |
import gradio as gr | |
from dotenv import load_dotenv | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
from csv_agent import CSVAgent | |
from grader import Grader | |
from grader_qa import GraderQA | |
from ingest import ingest_canvas_discussions | |
from utils import reset_folder | |
load_dotenv() | |
pickle_file = "vector_stores/canvas-discussions.pkl" | |
index_file = "vector_stores/canvas-discussions.index" | |
grading_model = 'gpt-4' | |
qa_model = 'gpt-4' | |
llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True) | |
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002') | |
grader = None | |
grader_qa = None | |
disabled = gr.update(interactive=False) | |
enabled = gr.update(interactive=True) | |
def add_text(history, text): | |
print("Question asked: " + text) | |
response = run_model(text) | |
history = history + [(text, response)] | |
print(history) | |
return history, "" | |
def run_model(text): | |
global grader, grader_qa | |
start_time = time.time() | |
print("start time:" + str(start_time)) | |
try: | |
response = grader_qa.agent.run(text) | |
except Exception as e: | |
response = "I need a break. Please ask me again in a few minutes" | |
print(traceback.format_exc()) | |
sources = [] | |
# for document in response['source_documents']: | |
# sources.append(str(document.metadata)) | |
source = ','.join(set(sources)) | |
# response = response['answer'] + '\nSources: ' + str(len(sources)) | |
end_time = time.time() | |
# # If response contains string `SOURCES:`, then add a \n before `SOURCES` | |
# if "SOURCES:" in response: | |
# response = response.replace("SOURCES:", "\nSOURCES:") | |
response = response + "\n\n" + "Time taken: " + str(end_time - start_time) | |
print(response) | |
print(sources) | |
print("Time taken: " + str(end_time - start_time)) | |
return response | |
def set_model(history): | |
history = get_first_message(history) | |
return history | |
def ingest(url, canvas_api_key, history): | |
global grader, llm, embeddings | |
text = f"Downloaded discussion data from {url} to start grading" | |
ingest_canvas_discussions(url, canvas_api_key) | |
grader = Grader(grading_model) | |
response = "Ingested canvas data successfully" | |
history = history + [(text, response)] | |
return history, disabled, disabled, disabled, enabled | |
def start_grading(history): | |
global grader, grader_qa | |
text = f"Start grading discussions from {url}" | |
if grader: | |
# if grader.llm.model_name != grading_model: | |
# grader = Grader(grading_model) | |
# Create a new event loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
try: | |
# Use the event loop to run the async function | |
loop.run_until_complete(grader.run_chain()) | |
grader_qa = GraderQA(grader, embeddings) | |
response = "Grading done" | |
finally: | |
# Close the loop after use | |
loop.close() | |
else: | |
response = "Please ingest data before grading" | |
history = history + [(text, response)] | |
return history, disabled, enabled, enabled, enabled | |
def start_downloading(): | |
# files = glob.glob("output/*.csv") | |
# if files: | |
# file = files[0] | |
# return gr.outputs.File(file) | |
# else: | |
# return "File not found" | |
print(grader.csv) | |
return grader.csv, gr.update(visible=True), gr.update(value=process_csv_text(), visible=True) | |
def get_headers(): | |
df = process_csv_text() | |
return list(df.columns) | |
def get_first_message(history): | |
global grader_qa | |
history = [(None, | |
'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')] | |
return get_grading_status(history) | |
def get_grading_status(history): | |
global grader, grader_qa | |
# Check if grading is complete | |
if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len( | |
glob.glob("docs/*.html")) > 0: | |
if not grader: | |
grader = Grader(qa_model) | |
grader_qa = GraderQA(grader, embeddings) | |
elif not grader_qa: | |
grader_qa = GraderQA(grader, embeddings) | |
if len(history) == 1: | |
history = history + [(None, 'Grading is already complete. You can now ask questions')] | |
enable_fields(False, False, False, False, True, True, True) | |
# Check if data is ingested | |
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")): | |
if not grader_qa: | |
grader = Grader(qa_model) | |
if len(history) == 1: | |
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')] | |
enable_fields(False, False, False, True, True, False, False) | |
else: | |
history = history + [(None, 'Please ingest data and start grading')] | |
enable_fields(True, True, True, False, False, False, False) | |
return history | |
# handle enable/disable of fields | |
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status, | |
download_status, chatbot_txt_status, chatbot_btn_status): | |
url.interactive = url_status | |
canvas_api_key.interactive = canvas_api_key_status | |
submit.interactive = submit_status | |
grade.interactive = grade_status | |
download.interactive = download_status | |
txt.interactive = chatbot_txt_status | |
ask.interactive = chatbot_btn_status | |
if not chatbot_txt_status: | |
txt.placeholder = "Please grade discussions first" | |
else: | |
txt.placeholder = "Ask a question" | |
if not url_status: | |
url.placeholder = "Data already ingested" | |
if not canvas_api_key_status: | |
canvas_api_key.placeholder = "Data already ingested" | |
def reset_data(): | |
# Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history | |
global grader, grader_qa | |
#If there's data in docs/output folder during grading | |
if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len( | |
glob.glob("docs/*.html")) > 0: | |
reset_folder('output') | |
reset_folder('docs') | |
grader = None | |
grader_qa = None | |
history = [(None, 'Data reset successfully')] | |
return history | |
# If there's data in docs folder | |
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")): | |
reset_folder('docs') | |
history = [(None, 'Data reset successfully')] | |
return history | |
#If there's data in vector_stores folder | |
elif len(glob.glob("vector_stores/*.faiss")) > 0 or len(glob.glob("vector_stores/*.pkl")) > 0: | |
reset_folder('vector_stores') | |
history = [(None, 'Data reset successfully')] | |
return history | |
def get_output_dir(orig_name): | |
script_dir = os.path.dirname(os.path.abspath(__file__)) | |
output_dir = os.path.join(script_dir, 'output', orig_name) | |
return output_dir | |
def upload_grading_results(file, history): | |
global grader, grader_qa | |
# Delete output folder and save the file in output folder | |
if os.path.isdir('output'): | |
shutil.rmtree('output') | |
os.mkdir('output') | |
if os.path.isdir('vector_stores'): | |
shutil.rmtree('vector_stores') | |
os.mkdir('vector_stores') | |
# get current path | |
path = os.path.join("output", os.path.basename(file.name)) | |
# Copy the uploaded file from its temporary location to the desired location | |
shutil.copyfile(file.name, path) | |
grader_qa = CSVAgent(llm, embeddings, path) | |
history = [(None, 'Grading results uploaded successfully. Start Chatting!')] | |
return history | |
def bot(history): | |
return history | |
def process_csv_text(): | |
file_path = utils.get_csv_file_name() | |
df = pd.read_csv(file_path) | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>") | |
with gr.Row(): | |
url = gr.Textbox( | |
label="Canvas Discussion URL", | |
placeholder="Enter your Canvas Discussion URL" | |
) | |
canvas_api_key = gr.Textbox( | |
label="Canvas API Key", | |
placeholder="Enter your Canvas API Key", type="password" | |
) | |
submit = gr.Button(value="Submit", variant="secondary", ) | |
with gr.Row(): | |
table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True) | |
with gr.Row(): | |
grade = gr.Button(value="Grade", variant="secondary") | |
download = gr.Button(value="Download", variant="secondary") | |
file = gr.components.File(label="CSV Output", container=False, visible=False).style(height=100) | |
reset = gr.Button(value="Reset", variant="secondary") | |
chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
txt = gr.Textbox( | |
label="Ask questions about how students did on the discussion", | |
placeholder="Enter text and press enter, or upload an image", lines=1 | |
) | |
upload = gr.UploadButton(label="Upload grading results", type="file", file_types=["csv"], scale=0.5) | |
ask = gr.Button(value="Ask", variant="secondary", scale=1) | |
chatbot.value = get_first_message([]) | |
with gr.Row(): | |
table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True) | |
submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot, url, canvas_api_key, submit, grade], | |
postprocess=False).then( | |
bot, chatbot, chatbot | |
) | |
grade.click(start_grading, inputs=[chatbot], outputs=[chatbot, grade, download, txt, ask], | |
postprocess=False).then( | |
bot, chatbot, chatbot | |
) | |
download.click(start_downloading, inputs=[], outputs=[file, file, table]).then( | |
bot, chatbot, chatbot | |
) | |
txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then( | |
bot, chatbot, chatbot | |
) | |
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False, ).then( | |
bot, chatbot, chatbot | |
) | |
reset.click(reset_data, inputs=[], outputs=[], postprocess=False, show_progress=True, ).success( | |
bot, chatbot, chatbot) | |
upload.upload(upload_grading_results, inputs=[upload, chatbot], outputs=[chatbot], postprocess=False, ).then( | |
bot, chatbot, chatbot) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.queue(concurrency_count=5) | |
demo.launch(debug=True, ) | |