Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import time | |
from langchain import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from custom_csv_loader import CSVLoader | |
def reset_folder(destination): | |
# synchrnously and recursively delete the destination folder and all its contents, donot return until done | |
if os.path.isdir(destination): | |
shutil.rmtree(destination) | |
while os.path.isdir(destination): | |
time.sleep(4) | |
os.mkdir(destination) | |
while not os.path.isdir(destination): | |
time.sleep(4) | |
def search_index_from_docs(source_chunks, embeddings): | |
# print("source chunks: " + str(len(source_chunks))) | |
# print("embeddings: " + str(embeddings)) | |
search_index = FAISS.from_documents(source_chunks, embeddings) | |
return search_index | |
def load_index(folder_path, index_name, embeddings): | |
# Load index | |
db = FAISS.load_local( | |
folder_path=folder_path, | |
index_name=index_name, embeddings=embeddings, | |
) | |
print("Loaded index") | |
return db | |
def fetch_data_for_embeddings(document_list): | |
print("document list: " + str(len(document_list))) | |
return document_list | |
def create_chunk_documents(document_list): | |
sources = fetch_data_for_embeddings(document_list) | |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) | |
source_chunks = splitter.split_documents(sources) | |
print("chunks: " + str(len(source_chunks))) | |
print("sources: " + str(len(sources))) | |
return source_chunks | |
def create_index(folder_path, index_name, embeddings, document_list): | |
source_chunks = create_chunk_documents(document_list) | |
search_index = search_index_from_docs(source_chunks, embeddings) | |
FAISS.save_local(search_index, folder_path=folder_path, index_name=index_name) | |
return search_index | |
def get_csv_files(csv_file, source_column, field_names=None): | |
loader = None | |
if field_names: | |
loader = CSVLoader(file_path=csv_file, source_column=source_column, | |
csv_args={'fieldnames': field_names, 'restkey': 'restkey'}) | |
else: | |
loader = CSVLoader(file_path=csv_file, source_column=source_column, ) | |
document_list = loader.load() | |
return document_list | |
def index_exists(pickle_file, index_file): | |
return os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize( | |
pickle_file) > 0 | |