roman
commited on
Commit
•
d242d3a
1
Parent(s):
7bd33ad
try new approach
Browse files
app.py
CHANGED
@@ -1,40 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
4 |
-
import torch
|
5 |
import tempfile
|
6 |
from pydub import AudioSegment
|
7 |
import numpy as np
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# ]
|
15 |
-
|
16 |
-
available_models = ["Yehor/whisper-small-ukrainian"]
|
17 |
-
|
18 |
-
st.title("Voice Recognition App using SpeechSeq2Seq")
|
19 |
-
|
20 |
-
st.write("Upload an audio file and choose a model to transcribe it to text.")
|
21 |
-
|
22 |
-
# Model selection dropdown
|
23 |
-
model_choice = st.selectbox("Choose a SpeechSeq2Seq model", available_models)
|
24 |
|
|
|
25 |
|
26 |
-
|
27 |
-
@st.cache_resource
|
28 |
-
def load_model_and_processor(model_name):
|
29 |
-
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
30 |
-
# processor = Wav2Vec2Processor.from_pretrained(model_name)
|
31 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
32 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
33 |
-
return model, processor
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
st.write(
|
38 |
|
39 |
# File uploader for audio file
|
40 |
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
@@ -45,7 +27,7 @@ if uploaded_file is not None:
|
|
45 |
temp_file.write(uploaded_file.read())
|
46 |
temp_file_path = temp_file.name
|
47 |
|
48 |
-
# Convert audio file to
|
49 |
audio = AudioSegment.from_file(temp_file_path)
|
50 |
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
51 |
audio.export(temp_wav_path, format="wav")
|
@@ -54,23 +36,13 @@ if uploaded_file is not None:
|
|
54 |
|
55 |
st.write("Transcribing audio...")
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
#
|
61 |
-
# # Normalize audio
|
62 |
-
# audio_input = (audio_input - np.mean(audio_input)) / np.std(audio_input)
|
63 |
-
#
|
64 |
-
# # Process the audio
|
65 |
-
# input_features = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
66 |
-
#
|
67 |
-
# # Generate transcription
|
68 |
-
# with torch.no_grad():
|
69 |
-
# predicted_ids = model.generate(input_features)
|
70 |
-
#
|
71 |
-
# transcription = processor.batch_decode(predicted_ids)[0]
|
72 |
|
73 |
-
|
|
|
74 |
|
|
|
75 |
st.write("Transcription:")
|
76 |
-
st.write(
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
|
|
|
|
3 |
import tempfile
|
4 |
from pydub import AudioSegment
|
5 |
import numpy as np
|
6 |
|
7 |
+
# Load the ASR pipeline
|
8 |
+
@st.cache_resource
|
9 |
+
def load_asr_pipeline():
|
10 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="Yehor/whisper-small-ukrainian")
|
11 |
+
return asr_pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
st.title("Voice Recognition App using Whisper")
|
14 |
|
15 |
+
st.write("Upload an audio file and the Whisper model will transcribe it to text.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Load the ASR pipeline
|
18 |
+
asr_pipeline = load_asr_pipeline()
|
19 |
+
st.write("Model loaded successfully.")
|
20 |
|
21 |
# File uploader for audio file
|
22 |
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
|
|
27 |
temp_file.write(uploaded_file.read())
|
28 |
temp_file_path = temp_file.name
|
29 |
|
30 |
+
# Convert audio file to WAV format if necessary
|
31 |
audio = AudioSegment.from_file(temp_file_path)
|
32 |
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
33 |
audio.export(temp_wav_path, format="wav")
|
|
|
36 |
|
37 |
st.write("Transcribing audio...")
|
38 |
|
39 |
+
# Read the audio file
|
40 |
+
audio_input = AudioSegment.from_file(temp_wav_path).set_frame_rate(16000).set_channels(1)
|
41 |
+
audio_input = np.array(audio_input.get_array_of_samples(), dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Perform transcription
|
44 |
+
result = asr_pipeline(audio_input)
|
45 |
|
46 |
+
# Display transcription
|
47 |
st.write("Transcription:")
|
48 |
+
st.write(result['text'])
|
app3.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from transformers import AutoModelForSpeechSeq2Seq, Wav2Vec2Processor
|
3 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
4 |
+
import torch
|
5 |
+
import tempfile
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Define available models
|
10 |
+
# available_models = [
|
11 |
+
# "facebook/s2t-small-mustc-en-fr-st",
|
12 |
+
# "facebook/s2t-medium-mustc-en-fr-st",
|
13 |
+
# "facebook/s2t-large-mustc-en-fr-st"
|
14 |
+
# ]
|
15 |
+
|
16 |
+
available_models = ["Yehor/whisper-small-ukrainian"]
|
17 |
+
|
18 |
+
st.title("Voice Recognition App using SpeechSeq2Seq")
|
19 |
+
|
20 |
+
st.write("Upload an audio file and choose a model to transcribe it to text.")
|
21 |
+
|
22 |
+
# Model selection dropdown
|
23 |
+
model_choice = st.selectbox("Choose a SpeechSeq2Seq model", available_models)
|
24 |
+
|
25 |
+
|
26 |
+
# Load the selected model and processor
|
27 |
+
@st.cache_resource
|
28 |
+
def load_model_and_processor(model_name):
|
29 |
+
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
30 |
+
# processor = Wav2Vec2Processor.from_pretrained(model_name)
|
31 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
32 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
33 |
+
return model, processor
|
34 |
+
|
35 |
+
st.write(f"Loading {model_choice} model...")
|
36 |
+
model, processor = load_model_and_processor(model_choice)
|
37 |
+
st.write(f"{model_choice} model loaded successfully.")
|
38 |
+
|
39 |
+
# File uploader for audio file
|
40 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
41 |
+
|
42 |
+
if uploaded_file is not None:
|
43 |
+
# Save the uploaded file temporarily
|
44 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
45 |
+
temp_file.write(uploaded_file.read())
|
46 |
+
temp_file_path = temp_file.name
|
47 |
+
|
48 |
+
# Convert audio file to a format supported by the processor (if necessary)
|
49 |
+
audio = AudioSegment.from_file(temp_file_path)
|
50 |
+
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
51 |
+
audio.export(temp_wav_path, format="wav")
|
52 |
+
|
53 |
+
st.audio(uploaded_file, format="audio/wav")
|
54 |
+
|
55 |
+
st.write("Transcribing audio...")
|
56 |
+
|
57 |
+
# # Load audio
|
58 |
+
# audio_input = AudioSegment.from_file(temp_wav_path).set_frame_rate(16000).set_channels(1)
|
59 |
+
# audio_input = np.array(audio_input.get_array_of_samples())
|
60 |
+
#
|
61 |
+
# # Normalize audio
|
62 |
+
# audio_input = (audio_input - np.mean(audio_input)) / np.std(audio_input)
|
63 |
+
#
|
64 |
+
# # Process the audio
|
65 |
+
# input_features = processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
66 |
+
#
|
67 |
+
# # Generate transcription
|
68 |
+
# with torch.no_grad():
|
69 |
+
# predicted_ids = model.generate(input_features)
|
70 |
+
#
|
71 |
+
# transcription = processor.batch_decode(predicted_ids)[0]
|
72 |
+
|
73 |
+
transcription = model.transcribe(temp_wav_path)
|
74 |
+
|
75 |
+
st.write("Transcription:")
|
76 |
+
st.write(transcription)
|