File size: 16,402 Bytes
5231633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import einops
import numpy as np
import models
from modules.common_ckpt import Linear, Conv2d, AttnBlock, ResBlock, LayerNorm2d
#from modules.common_ckpt import AttnBlock,
from einops import rearrange
import torch.fft as fft
from modules.speed_util import checkpoint
def batched_linear_mm(x, wb):
    # x: (B, N, D1); wb: (B, D1 + 1, D2) or (D1 + 1, D2)
    one = torch.ones(*x.shape[:-1], 1, device=x.device)
    return torch.matmul(torch.cat([x, one], dim=-1), wb)
def make_coord_grid(shape, range, device=None):
    """

        Args:

            shape: tuple

            range: [minv, maxv] or [[minv_1, maxv_1], ..., [minv_d, maxv_d]] for each dim

        Returns:

            grid: shape (*shape, )

    """
    l_lst = []
    for i, s in enumerate(shape):
        l = (0.5 + torch.arange(s, device=device)) / s
        if isinstance(range[0], list) or isinstance(range[0], tuple):
            minv, maxv = range[i]
        else:
            minv, maxv = range
        l = minv + (maxv - minv) * l
        l_lst.append(l)
    grid = torch.meshgrid(*l_lst, indexing='ij')
    grid = torch.stack(grid, dim=-1)
    return grid
def init_wb(shape):
    weight = torch.empty(shape[1], shape[0] - 1)
    nn.init.kaiming_uniform_(weight, a=math.sqrt(5))

    bias = torch.empty(shape[1], 1)
    fan_in, _ = nn.init._calculate_fan_in_and_fan_out(weight)
    bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
    nn.init.uniform_(bias, -bound, bound)

    return torch.cat([weight, bias], dim=1).t().detach()
    
def init_wb_rewrite(shape):
    weight = torch.empty(shape[1], shape[0] - 1)
    
    torch.nn.init.xavier_uniform_(weight)

    bias = torch.empty(shape[1], 1)
    torch.nn.init.xavier_uniform_(bias)
   

    return torch.cat([weight, bias], dim=1).t().detach()
class HypoMlp(nn.Module):

    def __init__(self, depth, in_dim, out_dim, hidden_dim, use_pe, pe_dim, out_bias=0, pe_sigma=1024):
        super().__init__()
        self.use_pe = use_pe
        self.pe_dim = pe_dim
        self.pe_sigma = pe_sigma
        self.depth = depth
        self.param_shapes = dict()
        if use_pe:
            last_dim = in_dim * pe_dim
        else:
            last_dim = in_dim
        for i in range(depth):  # for each layer the weight
            cur_dim = hidden_dim if i < depth - 1 else out_dim
            self.param_shapes[f'wb{i}'] = (last_dim + 1, cur_dim)
            last_dim = cur_dim
        self.relu = nn.ReLU()
        self.params = None
        self.out_bias = out_bias
        
    def set_params(self, params):
        self.params = params

    def convert_posenc(self, x):
        w = torch.exp(torch.linspace(0, np.log(self.pe_sigma), self.pe_dim // 2, device=x.device))
        x = torch.matmul(x.unsqueeze(-1), w.unsqueeze(0)).view(*x.shape[:-1], -1)
        x = torch.cat([torch.cos(np.pi * x), torch.sin(np.pi * x)], dim=-1)
        return x

    def forward(self, x):
        B, query_shape = x.shape[0], x.shape[1: -1]
        x = x.view(B, -1, x.shape[-1])
        if self.use_pe:
            x = self.convert_posenc(x)
            #print('in line 79 after pos embedding', x.shape)
        for i in range(self.depth):
            x = batched_linear_mm(x, self.params[f'wb{i}'])
            if i < self.depth - 1:
                x = self.relu(x)
            else:
                x = x + self.out_bias
        x = x.view(B, *query_shape, -1)
        return x



class Attention(nn.Module):

    def __init__(self, dim, n_head, head_dim, dropout=0.):
        super().__init__()
        self.n_head = n_head
        inner_dim = n_head * head_dim
        self.to_q = nn.Sequential(
            nn.SiLU(),
            Linear(dim, inner_dim ))
        self.to_kv = nn.Sequential(
            nn.SiLU(),
            Linear(dim, inner_dim * 2))
        self.scale = head_dim ** -0.5
        # self.to_out = nn.Sequential(
        #     Linear(inner_dim, dim),
        #     nn.Dropout(dropout),
        # )

    def forward(self, fr, to=None):
        if to is None:
            to = fr
        q = self.to_q(fr)
        k, v = self.to_kv(to).chunk(2, dim=-1)
        q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> b h n d', h=self.n_head), [q, k, v])

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = F.softmax(dots, dim=-1) # b h n n
        out = torch.matmul(attn, v)
        out = einops.rearrange(out, 'b h n d -> b n (h d)')
        return out


class FeedForward(nn.Module):

    def __init__(self, dim, ff_dim, dropout=0.):
        super().__init__()
       
        self.net = nn.Sequential(
            Linear(dim, ff_dim),
            nn.GELU(),
            #GlobalResponseNorm(ff_dim),
            nn.Dropout(dropout),
            Linear(ff_dim, dim)
        )

    def forward(self, x):
        return self.net(x)


class PreNorm(nn.Module):

    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn

    def forward(self, x):
        return self.fn(self.norm(x))


#TransInr(ind=2048, ch=256, n_head=16, head_dim=16, n_groups=64, f_dim=256, time_dim=self.c_r, t_conds = [])
class TransformerEncoder(nn.Module):

    def __init__(self, dim, depth, n_head, head_dim, ff_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList()
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, n_head, head_dim, dropout=dropout)),
                PreNorm(dim, FeedForward(dim, ff_dim, dropout=dropout)),
            ]))

    def forward(self, x):
        for norm_attn, norm_ff in self.layers:
            x = x + norm_attn(x)
            x = x + norm_ff(x)
        return x
class ImgrecTokenizer(nn.Module):

    def __init__(self, input_size=32*32, patch_size=1, dim=768, padding=0, img_channels=16):
        super().__init__()
        
        if isinstance(patch_size, int):
            patch_size = (patch_size, patch_size)
        if isinstance(padding, int):
            padding = (padding, padding)
        self.patch_size = patch_size
        self.padding = padding
        self.prefc = nn.Linear(patch_size[0] * patch_size[1] * img_channels, dim)
        
        self.posemb = nn.Parameter(torch.randn(input_size, dim))

    def forward(self, x):
        #print(x.shape)
        p = self.patch_size
        x = F.unfold(x, p, stride=p, padding=self.padding) # (B, C * p * p, L)
        #print('in line 185 after unfoding', x.shape)
        x = x.permute(0, 2, 1).contiguous()
        ttt = self.prefc(x)
        
        x = self.prefc(x) + self.posemb[:x.shape[1]].unsqueeze(0)
        return x

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        self.conv1 = Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

class TimestepBlock_res(nn.Module):
    def __init__(self, c, c_timestep, conds=['sca']):
        super().__init__()
        
        self.mapper = Linear(c_timestep, c * 2)
        self.conds = conds
        for cname in conds:
            setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2))

    
    
    
    def forward(self, x, t):
        #print(x.shape, t.shape, self.conds, 'in line 269')
        t = t.chunk(len(self.conds) + 1, dim=1)
        a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
        
        for i, c in enumerate(self.conds):
            ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
            a, b = a + ac, b + bc
        return x * (1 + a) + b
        
def zero_module(module):
    """

    Zero out the parameters of a module and return it.

    """
    for p in module.parameters():
        p.detach().zero_()
    return module
        

                
class ScaleNormalize_res(nn.Module):
    def __init__(self, c, scale_c, conds=['sca']):
        super().__init__()
        self.c_r = scale_c
        self.mapping = TimestepBlock_res(c, scale_c, conds=conds)
        self.t_conds = conds
        self.alpha = nn.Conv2d(c, c, kernel_size=1)
        self.gamma = nn.Conv2d(c, c, kernel_size=1)
        self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
        
    
    def gen_r_embedding(self, r, max_positions=10000):
        r = r * max_positions
        half_dim = self.c_r // 2
        emb = math.log(max_positions) / (half_dim - 1)
        emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
        emb = r[:, None] * emb[None, :]
        emb = torch.cat([emb.sin(), emb.cos()], dim=1)
        if self.c_r % 2 == 1:  # zero pad
            emb = nn.functional.pad(emb, (0, 1), mode='constant')
        return emb
    def forward(self, x, std_size=24*24):
        scale_val = math.sqrt(math.log(x.shape[-2] * x.shape[-1], std_size))
        scale_val = torch.ones(x.shape[0]).to(x.device)*scale_val
        scale_val_f = self.gen_r_embedding(scale_val)
        for c in self.t_conds:
            t_cond = torch.zeros_like(scale_val)
            scale_val_f = torch.cat([scale_val_f, self.gen_r_embedding(t_cond)], dim=1)
       
        f = self.mapping(x, scale_val_f)
    
        return f + x
        

class TransInr_withnorm(nn.Module):

    def __init__(self, ind=2048, ch=16, n_head=12, head_dim=64, n_groups=64, f_dim=768, time_dim=2048, t_conds=[]):
        super().__init__()
        self.input_layer=  nn.Conv2d(ind, ch, 1)
        self.tokenizer = ImgrecTokenizer(dim=ch, img_channels=ch)
        #self.hyponet = HypoMlp(depth=12, in_dim=2, out_dim=ch, hidden_dim=f_dim, use_pe=True, pe_dim=128)
        #self.transformer_encoder = TransformerEncoder(dim=f_dim, depth=12, n_head=n_head, head_dim=f_dim // n_head, ff_dim=3*f_dim, )

        self.hyponet = HypoMlp(depth=2, in_dim=2, out_dim=ch, hidden_dim=f_dim, use_pe=True, pe_dim=128)
        self.transformer_encoder = TransformerEncoder(dim=f_dim, depth=1, n_head=n_head, head_dim=f_dim // n_head, ff_dim=f_dim)
        #self.transformer_encoder = TransInr( ch=ch, n_head=16, head_dim=16, n_groups=64, f_dim=ch, time_dim=time_dim, t_conds = [])
        self.base_params = nn.ParameterDict()
        n_wtokens = 0
        self.wtoken_postfc = nn.ModuleDict()
        self.wtoken_rng = dict()
        for name, shape in self.hyponet.param_shapes.items():
            self.base_params[name] = nn.Parameter(init_wb(shape))
            g = min(n_groups, shape[1])
            assert shape[1] % g == 0
            self.wtoken_postfc[name] = nn.Sequential(
                nn.LayerNorm(f_dim),
                nn.Linear(f_dim, shape[0] - 1),
            )
            self.wtoken_rng[name] = (n_wtokens, n_wtokens + g)
            n_wtokens += g
        self.wtokens = nn.Parameter(torch.randn(n_wtokens, f_dim))
        self.output_layer=  nn.Conv2d(ch, ind, 1)
       
        
        self.mapp_t = TimestepBlock_res( ind, time_dim, conds = t_conds)

        
        self.hr_norm = ScaleNormalize_res(ind, 64, conds=[])
         
        self.normalize_final = nn.Sequential(
            LayerNorm2d(ind, elementwise_affine=False, eps=1e-6),
        )
        
        self.toout = nn.Sequential(
        Linear( ind*2,  ind // 4),
        nn.GELU(),
        Linear( ind // 4,  ind)
        )
        self.apply(self._init_weights)
        
        mask = torch.zeros((1, 1, 32, 32))
        h, w = 32, 32
        center_h, center_w = h // 2, w // 2
        low_freq_h, low_freq_w = h // 4, w // 4  
        mask[:, :, center_h-low_freq_h:center_h+low_freq_h, center_w-low_freq_w:center_w+low_freq_w] = 1
        self.mask = mask
        
    
    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            torch.nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)  
        #nn.init.constant_(self.last.weight, 0)
    def adain(self, feature_a, feature_b):
        norm_mean = torch.mean(feature_a, dim=(2, 3), keepdim=True)
        norm_std = torch.std(feature_a, dim=(2, 3), keepdim=True)
        #feature_a = F.interpolate(feature_a, feature_b.shape[2:])
        feature_b = (feature_b - feature_b.mean(dim=(2, 3), keepdim=True)) / (1e-8 + feature_b.std(dim=(2, 3), keepdim=True)) * norm_std + norm_mean
        return  feature_b 
    def forward(self, target_shape, target, dtokens, t_emb):
        #print(target.shape, dtokens.shape, 'in line 290')
        hlr, wlr = dtokens.shape[2:]
        original = dtokens
        
        dtokens = self.input_layer(dtokens)
        dtokens = self.tokenizer(dtokens)
        B = dtokens.shape[0]
        wtokens = einops.repeat(self.wtokens, 'n d -> b n d', b=B)
        #print(wtokens.shape, dtokens.shape)
        trans_out = self.transformer_encoder(torch.cat([dtokens, wtokens], dim=1))
        trans_out = trans_out[:, -len(self.wtokens):, :]

        params = dict()
        for name, shape in self.hyponet.param_shapes.items():
            wb = einops.repeat(self.base_params[name], 'n m -> b n m', b=B)
            w, b = wb[:, :-1, :], wb[:, -1:, :]

            l, r = self.wtoken_rng[name]
            x = self.wtoken_postfc[name](trans_out[:, l: r, :])
            x = x.transpose(-1, -2) # (B, shape[0] - 1, g)
            w = F.normalize(w * x.repeat(1, 1, w.shape[2] // x.shape[2]), dim=1)

            wb = torch.cat([w, b], dim=1)
            params[name] = wb
        coord = make_coord_grid(target_shape[2:], (-1, 1), device=dtokens.device)
        coord = einops.repeat(coord, 'h w d -> b h w d', b=dtokens.shape[0])
        self.hyponet.set_params(params)
        ori_up = F.interpolate(original.float(), target_shape[2:])
        hr_rec = self.output_layer(rearrange(self.hyponet(coord), 'b h w c -> b c h w'))  + ori_up
        #print(hr_rec.shape, target.shape, torch.cat((hr_rec, target), dim=1).permute(0, 2, 3, 1).shape, 'in line 537')
       
        output = self.toout(torch.cat((hr_rec, target), dim=1).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        #print(output.shape, 'in line 540')
        #output = self.last(output.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)* 0.3
        output = self.mapp_t(output, t_emb)
        output  = self.normalize_final(output)
        output = self.hr_norm(output)
        #output = self.last(output.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        #output = self.mapp_t(output, t_emb)
        #output = self.weight(output) * output
        
        return output 






class LayerNorm2d(nn.LayerNorm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, x):
        return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

class GlobalResponseNorm(nn.Module):
    "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x



if __name__ == '__main__':
    #ef __init__(self, ch, n_head, head_dim, n_groups):
    trans_inr = TransInr(16, 24, 32, 64).cuda()
    input = torch.randn((1, 16, 24, 24)).cuda()
    source = torch.randn((1, 16, 16, 16)).cuda()
    t = torch.randn((1, 128)).cuda()
    output, hr = trans_inr(input, t, source)
    
    total_up = sum([ param.nelement()  for param in trans_inr.parameters()])
    print(output.shape, hr.shape, total_up /1e6 )