Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler | |
from diffusers import AutoPipelineForText2Image | |
import spaces | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 | |
# repo = "dataautogpt3/OpenDalleV1.1" | |
repo = "SG161222/RealVisXL_V4.0" | |
repo = "SG161222/RealVisXL_V5.0" | |
# repo="stabilityai/stable-diffusion-3-medium-tensorrt" | |
# pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device) | |
pipeline = AutoPipelineForText2Image.from_pretrained(repo, torch_dtype=torch.float16).to('cuda') | |
def adjust_to_nearest_multiple(value, divisor=8): | |
""" | |
Adjusts the input value to the nearest multiple of the divisor. | |
Args: | |
value (int): The value to adjust. | |
divisor (int): The divisor to which the value should be divisible. Default is 8. | |
Returns: | |
int: The nearest multiple of the divisor. | |
""" | |
if value % divisor == 0: | |
return value | |
else: | |
# Round to the nearest multiple of divisor | |
return round(value / divisor) * divisor | |
def adjust_dimensions(height, width): | |
""" | |
Adjusts the height and width to be divisible by 8. | |
Args: | |
height (int): The height to adjust. | |
width (int): The width to adjust. | |
Returns: | |
tuple: Adjusted height and width. | |
""" | |
new_height = adjust_to_nearest_multiple(height) | |
new_width = adjust_to_nearest_multiple(width) | |
return new_height, new_width | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 4100 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
width = min(width, MAX_IMAGE_SIZE // 2) | |
height = min(height, MAX_IMAGE_SIZE // 2) | |
height, width = adjust_dimensions(height, width) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipeline(prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
# image = pipe( | |
# prompt = prompt, | |
# negative_prompt = negative_prompt, | |
# guidance_scale = guidance_scale, | |
# num_inference_steps = num_inference_steps, | |
# width = width, | |
# height = height, | |
# generator = generator | |
# ).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 580px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) | |
Learn more about the [Stable Diffusion 3 series](https://stability.ai/news/stable-diffusion-3). Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), [Stable Assistant](https://stability.ai/stable-assistant), or on Discord via [Stable Artisan](https://stability.ai/stable-artisan). Run locally with [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [diffusers](https://github.com/huggingface/diffusers) | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |