novo arquivo
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
|
3 |
+
import torch
|
4 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
5 |
+
torch.hub.download_url_to_file('https://storage.googleapis.com/perceiver_io/dalmation.jpg', 'dog.jpg')
|
6 |
+
|
7 |
+
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
|
8 |
+
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
|
9 |
+
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
|
10 |
+
def classify_image(image):
|
11 |
+
results = image_pipe(image)
|
12 |
+
# convert to format Gradio expects
|
13 |
+
output = {}
|
14 |
+
for prediction in results:
|
15 |
+
predicted_label = prediction['label']
|
16 |
+
score = prediction['score']
|
17 |
+
output[predicted_label] = score
|
18 |
+
return output
|
19 |
+
image = gr.inputs.Image(type="pil")
|
20 |
+
label = gr.outputs.Label(num_top_classes=5)
|
21 |
+
examples = [["cats.jpg"], ["dog.jpg"]]
|
22 |
+
title = "Interactive demo: Perceiver for image classification"
|
23 |
+
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds."
|
24 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.14795'>Perceiver IO: A General Architecture for Structured Inputs & Outputs</a> | <a href='https://deepmind.com/blog/article/building-architectures-that-can-handle-the-worlds-data/'>Official blog</a></p>"
|
25 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|