Rubén Escobedo
commited on
Commit
•
55351f1
1
Parent(s):
41c4682
Update app.py
Browse files
app.py
CHANGED
@@ -3,51 +3,7 @@ import gradio as gr
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import torch
|
5 |
|
6 |
-
|
7 |
-
from albumentations import (
|
8 |
-
Compose,
|
9 |
-
OneOf,
|
10 |
-
ElasticTransform,
|
11 |
-
GridDistortion,
|
12 |
-
OpticalDistortion,
|
13 |
-
HorizontalFlip,
|
14 |
-
Transpose,
|
15 |
-
CLAHE,
|
16 |
-
ShiftScaleRotate
|
17 |
-
)
|
18 |
-
|
19 |
-
class SegmentationAlbumentationsTransform(ItemTransform):
|
20 |
-
split_idx = 0
|
21 |
-
|
22 |
-
def __init__(self, aug):
|
23 |
-
self.aug = aug
|
24 |
-
|
25 |
-
def encodes(self, x):
|
26 |
-
img,mask = x
|
27 |
-
aug = self.aug(image=np.array(img), mask=np.array(mask))
|
28 |
-
return PILImage.create(aug["image"]), PILMask.create(aug["mask"])
|
29 |
-
|
30 |
-
class TargetMaskConvertTransform(ItemTransform):
|
31 |
-
def __init__(self):
|
32 |
-
pass
|
33 |
-
def encodes(self, x):
|
34 |
-
img,mask = x
|
35 |
-
|
36 |
-
#Convert to array
|
37 |
-
mask = np.array(mask)
|
38 |
-
|
39 |
-
# background = 0, leaves = 1, pole = 74 o 76, wood = 25 o 29, grape = 255
|
40 |
-
mask[mask == 255] = 1 # grape
|
41 |
-
mask[mask == 150] = 2 # leaves
|
42 |
-
mask[mask == 76] = 3 ; mask[mask == 74] = 3 # pole
|
43 |
-
mask[mask == 29] = 4 ; mask[mask == 25] = 4 # wood
|
44 |
-
mask[mask >= 5] = 0 # resto: background
|
45 |
-
|
46 |
-
# Back to PILMask
|
47 |
-
mask = PILMask.create(mask)
|
48 |
-
return img, mask
|
49 |
-
|
50 |
-
def transform_image(image, device):
|
51 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
52 |
transforms.Normalize(
|
53 |
[0.485, 0.456, 0.406],
|
@@ -55,35 +11,29 @@ def transform_image(image, device):
|
|
55 |
image_aux = image
|
56 |
return my_transforms(image_aux).unsqueeze(0).to(device)
|
57 |
|
58 |
-
def mask_to_img(mask):
|
59 |
-
mask[mask == 1] = 255 # grape
|
60 |
-
mask[mask == 2] = 150 # leaves
|
61 |
-
mask[mask == 3] = 74 # pole
|
62 |
-
mask[mask == 4] = 25 # wood
|
63 |
-
mask=np.reshape(mask,(480,640))
|
64 |
-
|
65 |
-
return mask
|
66 |
-
|
67 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
68 |
def predict(img):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
# Creamos la interfaz y la lanzamos.
|
89 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False)
|
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import torch
|
5 |
|
6 |
+
def transform_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
my_transforms = transforms.Compose([transforms.ToTensor(),
|
8 |
transforms.Normalize(
|
9 |
[0.485, 0.456, 0.406],
|
|
|
11 |
image_aux = image
|
12 |
return my_transforms(image_aux).unsqueeze(0).to(device)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
15 |
def predict(img):
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model = torch.jit.load("model.pth")
|
18 |
+
model = model.cpu()
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
image = transforms.Resize((480,640))(img)
|
22 |
+
tensor = transform_image(image=image)
|
23 |
+
|
24 |
+
model.to(device)
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(tensor)
|
27 |
+
|
28 |
+
mask = np.array(outputs.cpu())
|
29 |
+
mask[mask == 1] = 255 # grape
|
30 |
+
mask[mask == 2] = 150 # leaves
|
31 |
+
mask[mask == 3] = 76 # pole
|
32 |
+
mask[mask == 4] = 29 # wood
|
33 |
+
|
34 |
+
mask=np.reshape(mask,(480,640))
|
35 |
+
|
36 |
+
return Image.fromarray(mask.astype('uint8'))
|
37 |
|
38 |
# Creamos la interfaz y la lanzamos.
|
39 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False)
|