Rubén Escobedo
commited on
Commit
•
f5e4284
1
Parent(s):
6a6fb4c
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,49 @@
|
|
1 |
from fastai.vision.all import *
|
2 |
import gradio as gr
|
3 |
-
|
4 |
|
5 |
# Cargamos el learner
|
6 |
-
learn = load_learner('
|
7 |
|
8 |
# Definimos las etiquetas de nuestro modelo
|
9 |
labels = learn.dls.vocab
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
13 |
def predict(img):
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Creamos la interfaz y la lanzamos.
|
19 |
-
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.
|
|
|
1 |
from fastai.vision.all import *
|
2 |
import gradio as gr
|
3 |
+
import torchvision.transforms as transforms
|
4 |
|
5 |
# Cargamos el learner
|
6 |
+
learn = load_learner('best_model.pkl')
|
7 |
|
8 |
# Definimos las etiquetas de nuestro modelo
|
9 |
labels = learn.dls.vocab
|
10 |
|
11 |
+
def transform_image(image, device):
|
12 |
+
my_transforms = transforms.Compose([transforms.ToTensor(),
|
13 |
+
transforms.Normalize(
|
14 |
+
[0.485, 0.456, 0.406],
|
15 |
+
[0.229, 0.224, 0.225])])
|
16 |
+
image_aux = image
|
17 |
+
return my_transforms(image_aux).unsqueeze(0).to(device)
|
18 |
+
|
19 |
+
def mask_to_img(mask):
|
20 |
+
mask[mask == 1] = 255 # grape
|
21 |
+
mask[mask == 2] = 150 # leaves
|
22 |
+
mask[mask == 3] = 74 # pole
|
23 |
+
mask[mask == 4] = 25 # wood
|
24 |
+
mask=np.reshape(mask,(480,640))
|
25 |
+
|
26 |
+
return mask
|
27 |
|
28 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
29 |
def predict(img):
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
model = learn.cpu()
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
image = transforms.Resize((480,640))(img)
|
35 |
+
tensor = transform_image(image, device)
|
36 |
+
|
37 |
+
model.to(device)
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(tensor)
|
40 |
+
|
41 |
+
outputs = torch.argmax(outputs,1)
|
42 |
+
|
43 |
+
mask = np.array(outputs.cpu())
|
44 |
+
mask = mask_to_img(mask)
|
45 |
+
|
46 |
+
return Image.fromarray(mask.astype('uint8'))
|
47 |
|
48 |
# Creamos la interfaz y la lanzamos.
|
49 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape=(128,128)),examples=['1002_5866_6582.jpg','1038_31199_2068.jpg']).launch(share=False)
|