from fastai.vision.all import * import gradio as gr import torchvision.transforms as transforms import torch def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = torch.jit.load("model.pth") model = model.cpu() model.eval() image = transforms.Resize((480,640))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) mask = np.array(outputs.cpu()) mask[mask == 1] = 255 # grape mask[mask == 2] = 150 # leaves mask[mask == 3] = 76 # pole mask[mask == 4] = 29 # wood mask=np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['color_154.jpg','color_155.jpg']).launch(share=False)