import gradio as gr from huggingface_hub import hf_hub_download import yolov9 # Load the model model_path = r'./model/V2_best.pt' model = yolov9.load(model_path) def yolov9_inference(img_path, conf_threshold, iou_threshold): """ :param conf_threshold: Confidence threshold for NMS. :param iou_threshold: IoU threshold for NMS. :param img_path: Path to the image file. :param size: Optional, input size for inference. :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying. """ global model # Set model parameters model.conf = conf_threshold model.iou = iou_threshold # Perform inference results = model(img_path, size=640) # Optionally, show detection bounding boxes on image output = results.render() return output[0] def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): img_path = gr.Image(type="filepath", label="Image") conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5, ) yolov9_infer = gr.Button(value="Prediction") with gr.Column(): output_numpy = gr.Image(type="numpy",label="Output") yolov9_infer.click( fn=yolov9_inference, inputs=[ img_path, conf_threshold, iou_threshold, ], outputs=[output_numpy], ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """