Spaces:
Sleeping
Sleeping
File size: 4,817 Bytes
f360117 94aebbe f360117 94aebbe f360117 b6f6f81 f360117 94aebbe f360117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
DEVICE = 'cpu'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
import random
import time
import replicate
import torch
import pickle
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
calibrate_prompts = [
"4k photo",
'surrealist art',
'a psychedelic, fractal view',
'a beautiful collage',
'an intricate portrait',
'an impressionist painting',
'abstract art',
'an eldritch image',
'a sketch',
'a city full of darkness and graffiti',
'a black & white photo',
'a brilliant, timeless tarot card of the world',
'a photo of a woman',
'',
]
embs = []
ys = []
start_time = time.time()
glob_idx = 0
def next_image():
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
image, pooled_embeds = replicate.run(
"rynmurdock/zahir:43177e0594f3bc2e3560170ff0ffb6d1cacdddda1be25fbcd4348ef02b0b7d0f",
input={"prompt": prompt, 'im_emg': pickle.dumps(im_emb)}
)
embs.append(pooled_embeds)
return image[0]
else:
print('######### Roaming #########')
# sample only as many negatives as there are positives
indices = range(len(ys))
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
lower = min(len(pos_indices), len(neg_indices))
neg_indices = random.sample(neg_indices, lower)
pos_indices = random.sample(pos_indices, lower)
cut_embs = [embs[i] for i in neg_indices] + [embs[i] for i in pos_indices]
cut_ys = [ys[i] for i in neg_indices] + [ys[i] for i in pos_indices]
feature_embs = torch.stack([e[0].detach().cpu() for e in cut_embs])
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(np.array(feature_embs).shape, np.array(ys).shape)
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(np.array(feature_embs), np.array(cut_ys))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
image, im_emb = replicate.run(
"rynmurdock/zahir:43177e0594f3bc2e3560170ff0ffb6d1cacdddda1be25fbcd4348ef02b0b7d0f",
input={"prompt": prompt, 'im_emg': pickle.dumps(im_emb)}
)
embs.append(im_emb)
torch.save(lin_class.coef_, f'./{start_time}.pt')
return image[0]
def start(_):
return [
gr.Button(value='Like', interactive=True),
gr.Button(value='Neither', interactive=True),
gr.Button(value='Dislike', interactive=True),
gr.Button(value='Start', interactive=False),
next_image()
]
def choose(choice):
if choice == 'Like':
choice = 1
elif choice == 'Neither':
_ = embs.pop(-1)
return next_image()
else:
choice = 0
ys.append(choice)
return next_image()
css = "div#output-image {height: 768px !important; width: 768px !important; margin:auto;}"
with gr.Blocks(css=css) as demo:
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:32'>You will callibrate for several prompts and then roam.</ div>''')
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image',)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike', interactive=False,)
b2 = gr.Button(value='Neither', interactive=False,)
b1 = gr.Button(value='Like', interactive=False,)
b1.click(
choose,
[b1],
[img]
)
b2.click(
choose,
[b2],
[img]
)
b3.click(
choose,
[b3],
[img]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4],
[b1, b2, b3, b4, img,])
demo.launch() # Share your demo with just 1 extra parameter 🚀 |