File size: 18,129 Bytes
b874271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc61ed1
 
 
 
b874271
 
 
 
bc61ed1
b874271
 
 
 
 
bc61ed1
b874271
 
 
 
 
 
 
 
 
bc61ed1
 
 
 
 
 
 
b874271
 
 
 
 
 
 
bc61ed1
b874271
 
 
 
 
 
bc61ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b874271
 
 
 
 
 
 
 
 
bc61ed1
 
 
b874271
 
 
bc61ed1
 
 
 
 
 
 
 
 
 
 
b874271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc61ed1
 
 
b874271
bc61ed1
b874271
 
 
bc61ed1
b874271
 
 
 
 
bc61ed1
 
b874271
 
 
 
 
 
 
bc61ed1
 
 
b874271
 
 
 
 
 
 
 
 
 
 
 
bc61ed1
b874271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n",
      "Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/shreshth/anaconda3/envs/llm-test/lib/python3.11/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n",
      "Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n",
      "the same time. Both libraries are known to be incompatible and this\n",
      "can cause random crashes or deadlocks on Linux when loaded in the\n",
      "same Python program.\n",
      "Using threadpoolctl may cause crashes or deadlocks. For more\n",
      "information and possible workarounds, please see\n",
      "    https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n",
      "\n",
      "  warnings.warn(msg, RuntimeWarning)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'name': 'nq',\n",
       " 't_bmodel': LogisticRegression(),\n",
       " 't_amodel': LogisticRegression(),\n",
       " 'sep_layer_range': (27, 32),\n",
       " 'ap_layer_range': (17, 22)}"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# test probe loading \n",
    "import pickle as pkl\n",
    "import numpy as np\n",
    "import sklearn \n",
    "from sklearn import linear_model\n",
    "import os\n",
    "os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"\n",
    "\n",
    "# load the probe data\n",
    "with open(\"./model/20240625-131035_demo.pkl\", \"rb\") as f:\n",
    "    probe_data = pkl.load(f)\n",
    "# take the NQ open one\n",
    "probe_data = probe_data[-2]\n",
    "probe_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "se_probe = probe_data['t_bmodel']\n",
    "se_layer_range = probe_data['sep_layer_range']\n",
    "acc_probe = probe_data['t_amodel']\n",
    "acc_layer_range = probe_data['ap_layer_range']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "30a1c8e576f6448bb228b4ae9a3a8a48",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some parameters are on the meta device device because they were offloaded to the disk.\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer\n",
    "\n",
    "model_id = \"meta-llama/Llama-2-7b-chat-hf\"\n",
    "model = AutoModelForCausalLM.from_pretrained(model_id, device_map=\"auto\")\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "tokenizer.use_default_system_prompt = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Љ ( \"ass\n",
      "ЪЏ\n",
      "հ MO-OC\n",
      "tensor(30488, device='mps:0') Љ 1.0 -0.014414779243550946\n",
      "tensor(313, device='mps:0') ( -0.9998164331881116 0.9597905489862286\n",
      "tensor(376, device='mps:0') \" 0.9999998197256226 -0.9792630307582237\n",
      "tensor(465, device='mps:0') ass -0.9999994897301452 0.9680999957882863\n",
      "tensor(13, device='mps:0') \n",
      " -0.99999964561314 0.9983907264450047\n",
      "tensor(31147, device='mps:0') Ъ 1.0 -0.9999976710226259\n",
      "tensor(30282, device='mps:0') Џ 1.0 0.9999912572082477\n",
      "tensor(13, device='mps:0') \n",
      " 0.9999999999869607 0.9999964462206883\n",
      "tensor(31488, device='mps:0') հ 1.0 -1.0\n",
      "tensor(341, device='mps:0') M 0.9045896738793786 0.5590883316684834\n",
      "tensor(29949, device='mps:0') O -0.9999999803476437 -0.5270551643185932\n",
      "tensor(29899, device='mps:0') - 0.9992488974195408 0.9987826119127319\n",
      "tensor(29949, device='mps:0') O -0.9713693636571169 0.9993573968241007\n",
      "tensor(29907, device='mps:0') C -0.9999999701427968 0.9904799691607524\n",
      " <span style=\"background-color: #FF0000; color: black\">Љ</span> <span style=\"background-color: #00FF00; color: black\">(</span> <span style=\"background-color: #FF0000; color: black\">\"</span> <span style=\"background-color: #00FF00; color: black\">ass</span> <span style=\"background-color: #00FF00; color: black\">\n",
      "</span> <span style=\"background-color: #FF0000; color: black\">Ъ</span> <span style=\"background-color: #FF0000; color: black\">Џ</span> <span style=\"background-color: #FF0000; color: black\">\n",
      "</span> <span style=\"background-color: #FF0000; color: black\">հ</span> <span style=\"background-color: #FF1818; color: black\">M</span> <span style=\"background-color: #00FF00; color: black\">O</span> <span style=\"background-color: #FF0000; color: black\">-</span> <span style=\"background-color: #07FF07; color: black\">O</span> <span style=\"background-color: #00FF00; color: black\">C</span>\n"
     ]
    }
   ],
   "source": [
    "from typing import Tuple\n",
    "\n",
    "MAX_INPUT_TOKEN_LENGTH = 512\n",
    "\n",
    "\n",
    "def generate(\n",
    "    message: str,\n",
    "    system_prompt: str,\n",
    "    max_new_tokens: int = 10,\n",
    "    temperature: float = 0.6,\n",
    "    top_p: float = 0.9,\n",
    "    top_k: int = 50,\n",
    "    repetition_penalty: float = 1.2,\n",
    ") -> Tuple[str, str]:\n",
    "    conversation = []\n",
    "    if system_prompt:\n",
    "        conversation.append({\"role\": \"system\", \"content\": system_prompt})\n",
    "    conversation.append({\"role\": \"user\", \"content\": message})\n",
    "\n",
    "    input_ids = tokenizer.apply_chat_template(conversation, return_tensors=\"pt\")\n",
    "    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:\n",
    "        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]\n",
    "    input_ids = input_ids.to(model.device)\n",
    "\n",
    "    #### Generate without threading\n",
    "    generation_kwargs = dict(\n",
    "        input_ids=input_ids,\n",
    "        max_new_tokens=max_new_tokens,\n",
    "        do_sample=True,\n",
    "        top_p=top_p,\n",
    "        top_k=top_k,\n",
    "        temperature=temperature,\n",
    "        repetition_penalty=repetition_penalty,\n",
    "        output_hidden_states=True,\n",
    "        return_dict_in_generate=True,\n",
    "        attention_mask=torch.ones_like(input_ids),\n",
    "    )\n",
    "    with torch.no_grad():\n",
    "        outputs = model.generate(**generation_kwargs)\n",
    "    generated_tokens = outputs.sequences[0, input_ids.shape[1]:]\n",
    "    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)\n",
    "    print(generated_text)\n",
    "    # hidden states\n",
    "    hidden = outputs.hidden_states  # list of tensors, one for each token, then (batch size, sequence length, hidden size)\n",
    "\n",
    "    se_highlighted_text = \"\"\n",
    "    acc_highlighted_text = \"\"\n",
    "\n",
    "    # skip the first hidden state as it is the prompt\n",
    "    for i in range(1, len(hidden)):\n",
    "\n",
    "        # Semantic Uncertainty Probe\n",
    "        token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy()   # (num_layers, hidden_size)\n",
    "        se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)\n",
    "        se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1\n",
    "        \n",
    "        # Accuracy Probe\n",
    "        acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)\n",
    "        acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1\n",
    "        \n",
    "        output_id = outputs.sequences[0, input_ids.shape[1]+i]\n",
    "        output_word = tokenizer.decode(output_id)\n",
    "        print(output_id, output_word, se_probe_pred, acc_probe_pred)  \n",
    "\n",
    "        se_new_highlighted_text = highlight_text(output_word, se_probe_pred)\n",
    "        acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)\n",
    "        se_highlighted_text += f\" {se_new_highlighted_text}\"\n",
    "        acc_highlighted_text += f\" {acc_new_highlighted_text}\"\n",
    "        \n",
    "    return se_highlighted_text, acc_highlighted_text\n",
    "\n",
    "\n",
    "def highlight_text(text: str, uncertainty_score: float) -> str:\n",
    "    if uncertainty_score > 0:\n",
    "        html_color = \"#%02X%02X%02X\" % (\n",
    "            255,\n",
    "            int(255 * (1 - uncertainty_score)),\n",
    "            int(255 * (1 - uncertainty_score)),\n",
    "        )\n",
    "    else:\n",
    "        html_color = \"#%02X%02X%02X\" % (\n",
    "            int(255 * (1 + uncertainty_score)),\n",
    "            255,\n",
    "            int(255 * (1 + uncertainty_score)),\n",
    "        )\n",
    "    return '<span style=\"background-color: {}; color: black\">{}</span>'.format(\n",
    "        html_color, text\n",
    "    )\n",
    "\n",
    "message = \"What is the capital of France?\"\n",
    "system_prompt = \"\"\n",
    "se_highlighted_text, acc_highlighted_text = generate(message, system_prompt)\n",
    "print(se_highlighted_text)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[    1,   518, 25580, 29962,  3532, 14816, 29903,  6778,    13,  3492,\n",
      "           526,   263,  8444, 20255, 29889,    13, 29966,   829, 14816, 29903,\n",
      "          6778,    13,    13,  5816,   338,   278,  7483,   310,  3444, 29973,\n",
      "           518, 29914, 25580, 29962]]) torch.Size([1, 34])\n",
      "\n",
      " \n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[13], line 37\u001b[0m\n\u001b[1;32m     35\u001b[0m generated_text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     36\u001b[0m highlighted_text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 37\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m output \u001b[38;5;129;01min\u001b[39;00m streamer:\n\u001b[1;32m     38\u001b[0m     \u001b[38;5;28mprint\u001b[39m(output)\n\u001b[1;32m     39\u001b[0m     generated_text \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m output\n",
      "File \u001b[0;32m~/anaconda3/envs/llm-test/lib/python3.11/site-packages/transformers/generation/streamers.py:223\u001b[0m, in \u001b[0;36mTextIteratorStreamer.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    222\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__next__\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 223\u001b[0m     value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext_queue\u001b[38;5;241m.\u001b[39mget(timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtimeout)\n\u001b[1;32m    224\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m value \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstop_signal:\n\u001b[1;32m    225\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m()\n",
      "File \u001b[0;32m~/anaconda3/envs/llm-test/lib/python3.11/queue.py:180\u001b[0m, in \u001b[0;36mQueue.get\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m    178\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m remaining \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n\u001b[1;32m    179\u001b[0m             \u001b[38;5;28;01mraise\u001b[39;00m Empty\n\u001b[0;32m--> 180\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_empty\u001b[38;5;241m.\u001b[39mwait(remaining)\n\u001b[1;32m    181\u001b[0m item \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get()\n\u001b[1;32m    182\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_full\u001b[38;5;241m.\u001b[39mnotify()\n",
      "File \u001b[0;32m~/anaconda3/envs/llm-test/lib/python3.11/threading.py:324\u001b[0m, in \u001b[0;36mCondition.wait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    322\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    323\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m timeout \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 324\u001b[0m         gotit \u001b[38;5;241m=\u001b[39m waiter\u001b[38;5;241m.\u001b[39macquire(\u001b[38;5;28;01mTrue\u001b[39;00m, timeout)\n\u001b[1;32m    325\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    326\u001b[0m         gotit \u001b[38;5;241m=\u001b[39m waiter\u001b[38;5;241m.\u001b[39macquire(\u001b[38;5;28;01mFalse\u001b[39;00m)\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "from threading import Thread\n",
    "\n",
    "system_prompt = \"You are a helpful assistant.\"\n",
    "message = \"what is the capital of France?\"\n",
    "max_new_tokens = 100\n",
    "top_p = 0.9\n",
    "top_k = 50\n",
    "temperature = 0.7\n",
    "repetition_penalty = 1.2\n",
    "\n",
    "conversation = []\n",
    "\n",
    "conversation.append({\"role\": \"system\", \"content\": system_prompt})\n",
    "conversation.append({\"role\": \"user\", \"content\": message})\n",
    "input_ids = tokenizer.apply_chat_template(conversation, return_tensors=\"pt\")\n",
    "input_ids = input_ids.to(model.device)\n",
    "print(input_ids, input_ids.shape)\n",
    "streamer = TextIteratorStreamer(tokenizer, timeout=1000.0, skip_prompt=True, skip_special_tokens=True)\n",
    "generation_kwargs = dict(\n",
    "    input_ids=input_ids,\n",
    "    max_new_tokens=max_new_tokens,\n",
    "    do_sample=True,\n",
    "    top_p=top_p,\n",
    "    top_k=top_k,\n",
    "    temperature=temperature,\n",
    "    repetition_penalty=repetition_penalty,\n",
    "    streamer=streamer,\n",
    "    output_hidden_states=True,\n",
    "    return_dict_in_generate=True,\n",
    ")\n",
    "\n",
    "thread = Thread(target=model.generate, kwargs=generation_kwargs)\n",
    "thread.start()\n",
    "\n",
    "generated_text = \"\"\n",
    "highlighted_text = \"\"\n",
    "for output in streamer:\n",
    "    print(output)\n",
    "    generated_text += output\n",
    "\n",
    "    # yield generated_text\n",
    "for new_text in streamer:\n",
    "    print(new_text)\n",
    "    generated_text += new_text\n",
    "    print(generated_text)\n",
    "    current_input_ids = tokenizer.encode(generated_text, return_tensors=\"pt\").to(model.device)\n",
    "    print(current_input_ids, current_input_ids.shape)\n",
    "    with torch.no_grad():\n",
    "        outputs = model(current_input_ids, output_hidden_states=True)\n",
    "        hidden = outputs.hidden_states    \n",
    "        print(len(hidden))\n",
    "        print(hidden[-1].shape)\n",
    "        # Stack second last token embeddings from all layers \n",
    "        # if len(hidden) == 1:  # FIX: runtime error for mistral-7b on bioasq\n",
    "        #     sec_last_input = hidden[0]\n",
    "        # elif ((n_generated - 2) >= len(hidden)):\n",
    "        #     sec_last_input = hidden[-2]\n",
    "        # else:\n",
    "        #     sec_last_input = hidden[n_generated - 2]\n",
    "        sec_last_token_embedding = torch.stack([layer[:, -1, :].cpu() for layer in hidden])\n",
    "        print(sec_last_token_embedding.shape)\n",
    "    last_hidden_state = hidden[-1][:, -1, :].cpu().numpy()\n",
    "    print(last_hidden_state.shape)  \n",
    "    # TODO potentially need to only compute uncertainty for the last token in sentence?\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# concat hidden states\n",
    "\n",
    "sec_last_token_embedding = np.concatenate(sec_last_token_embedding.cpu().numpy()[layer_range], axis=1)\n",
    "# predict with probe\n",
    "pred = probe.predict(hidden_states)\n",
    "print(pred)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm-test",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}