import gradio as gr import spaces import soundfile as sf import torch from datetime import datetime import random import time from datetime import datetime import whisper import torch from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel import torch import numpy as np import os from timeit import default_timer as timer import torch import numpy as np import pandas as pd import whisper DESCRIPTION = """\ # Ai Trek - Generative AI usage This Space demonstrates LAIONBOT functionalities, 🔎 Large Language Models is a model notable for its ability to achieve general-purpose language generation and understanding. 🔨 On this demo, we can play with it not only by using text, but also asking questions and getting answers by Text to speech model. """ def load_whisper(): return whisper.load_model("medium", device = 'cpu') def load_tts(): tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol") #tts_model.to("cuda") tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol") return tts_model, tokenizer_tss def save_to_txt(text_to_save): with open('prompt.txt', 'w', encoding='utf-8') as f: f.write(text_to_save) def read_txt(): with open('prompt.txt') as f: lines = f.readlines() return lines def _load_model_tokenizer(): model_id = 'tangger/Qwen-7B-Chat' tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval() return model, tokenizer whisper_model = load_whisper() if torch.cuda.is_available(): whisper_model = whisper_model.to(device='cuda') #whisper_model = load_whisper() tts_model, tokenizer_tss = load_tts() model, tokenizer = _load_model_tokenizer() def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert(message), None if response is None else mdtex2html.convert(response), ) return y def _parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text @spaces.GPU def predict(_query, _chatbot, _task_history): print(f"User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś asystentem AI. Odpowiadaj grzecznie i w języku polskim :)" ): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"History: {_task_history}") _task_history.append((_query, full_response)) print(f"Qwen-7B-Chat: {_parse_text(full_response)}") @spaces.GPU def read_text(text): print("___Tekst do przeczytania!") inputs = tokenizer_tss(text, return_tensors="pt") with torch.no_grad(): output = tts_model(**inputs).waveform.squeeze().cpu().numpy() sf.write('temp_file.wav', output, tts_model.config.sampling_rate) return 'temp_file.wav' def update_audio(text): return 'temp_file.wav' def translate(audio): print("__Sending audio to stt model") transcription = whisper_model.transcribe(audio, language="pl") return transcription["text"] @spaces.GPU(enable_queue=True) def predict(audio, _chatbot, _task_history): # Użyj funkcji translate, aby przekształcić audio w tekst _query = whisper_model.transcribe(audio, language = 'pl')["text"] print(f"____User: {_parse_text(_query)}") _chatbot.append((_parse_text(_query), "")) full_response = "" for response in model.chat_stream(tokenizer, _query, history= _task_history, system = "You are an AI assistant. Please be kind and answer responsibly."): _chatbot[-1] = (_parse_text(_query), _parse_text(response)) yield _chatbot full_response = _parse_text(response) print(f"____History: {_task_history}") _task_history.append((_query, full_response)) print(f"__Qwen-7B-Chat: {_parse_text(full_response)}") print("____full_response",full_response) audio_file = read_text(_parse_text(full_response)) # Generowanie audio return full_response @spaces.GPU(enable_queue=True) def regenerate(_chatbot, _task_history): if not _task_history: yield _chatbot return item = _task_history.pop(-1) _chatbot.pop(-1) yield from predict(item[0], _chatbot, _task_history) with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height") query = gr.Textbox(lines=2, label='Input') task_history = gr.State([]) audio_output = gr.Audio('ai_intro.wav', label="Generated Audio (wav)", type='filepath', autoplay=False) # with gr.Row(): # submit_btn = gr.Button("🚀 Send an input file to LLM") with gr.Row(): audio_upload = gr.Audio(sources="microphone", type="filepath", show_label=False) submit_audio_btn = gr.Button("🎙️ Send an audio") #submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True) submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output) demo.queue().launch()