Spaces:
Running
Running
Update convert.py
Browse files- convert.py +116 -47
convert.py
CHANGED
@@ -2,42 +2,53 @@ import argparse
|
|
2 |
import json
|
3 |
import os
|
4 |
import shutil
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import torch
|
7 |
|
8 |
-
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download
|
9 |
from huggingface_hub.file_download import repo_folder_name
|
10 |
-
from safetensors.torch import save_file
|
11 |
from transformers import AutoConfig
|
12 |
from transformers.pipelines.base import infer_framework_load_model
|
|
|
13 |
|
14 |
|
15 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
sf_size = os.stat(sf_filename).st_size
|
17 |
pt_size = os.stat(pt_filename).st_size
|
18 |
|
19 |
if (sf_size - pt_size) / pt_size > 0.01:
|
20 |
-
raise RuntimeError(
|
21 |
-
f"""The file size different is more than 1%:
|
22 |
- {sf_filename}: {sf_size}
|
23 |
- {pt_filename}: {pt_size}
|
24 |
-
"""
|
25 |
-
)
|
26 |
|
27 |
|
28 |
-
def rename(pt_filename) -> str:
|
29 |
local = pt_filename.replace(".bin", ".safetensors")
|
30 |
local = local.replace("pytorch_model", "model")
|
31 |
return local
|
32 |
|
33 |
|
34 |
-
def convert_multi(model_id
|
35 |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
|
36 |
with open(filename, "r") as f:
|
37 |
data = json.load(f)
|
38 |
|
39 |
filenames = set(data["weight_map"].values())
|
40 |
-
local_filenames = []
|
41 |
for filename in filenames:
|
42 |
cached_filename = hf_hub_download(repo_id=model_id, filename=filename)
|
43 |
loaded = torch.load(cached_filename)
|
@@ -56,19 +67,25 @@ def convert_multi(model_id, folder):
|
|
56 |
json.dump(newdata, f)
|
57 |
local_filenames.append(index)
|
58 |
|
59 |
-
operations = [
|
60 |
-
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
|
61 |
-
]
|
62 |
|
63 |
return operations
|
64 |
|
65 |
|
66 |
-
def convert_single(model_id, folder):
|
67 |
sf_filename = "model.safetensors"
|
68 |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
69 |
loaded = torch.load(filename)
|
70 |
|
71 |
local = os.path.join(folder, sf_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
save_file(loaded, local, metadata={"format": "pt"})
|
73 |
|
74 |
check_file_size(local, filename)
|
@@ -76,50 +93,97 @@ def convert_single(model_id, folder):
|
|
76 |
operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)]
|
77 |
return operations
|
78 |
|
79 |
-
|
80 |
-
def check_final_model(model_id, folder):
|
81 |
config = hf_hub_download(repo_id=model_id, filename="config.json")
|
82 |
shutil.copy(config, os.path.join(folder, "config.json"))
|
83 |
config = AutoConfig.from_pretrained(folder)
|
84 |
-
|
85 |
_, pt_model = infer_framework_load_model(model_id, config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
input_ids = torch.arange(10).long().unsqueeze(0)
|
88 |
-
sf_logits = sf_model(input_ids)
|
89 |
-
pt_logits = pt_model(input_ids)
|
90 |
torch.testing.assert_close(sf_logits, pt_logits)
|
91 |
print(f"Model {model_id} is ok !")
|
92 |
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
95 |
info = api.model_info(model_id)
|
96 |
filenames = set(s.rfilename for s in info.siblings)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
if __name__ == "__main__":
|
@@ -135,7 +199,12 @@ if __name__ == "__main__":
|
|
135 |
type=str,
|
136 |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
137 |
)
|
|
|
|
|
|
|
|
|
|
|
138 |
args = parser.parse_args()
|
139 |
model_id = args.model_id
|
140 |
api = HfApi()
|
141 |
-
convert(api, model_id)
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import shutil
|
5 |
+
from tempfile import TemporaryDirectory
|
6 |
+
from collections import defaultdict
|
7 |
+
from inspect import signature
|
8 |
+
from typing import Optional, List
|
9 |
|
10 |
import torch
|
11 |
|
12 |
+
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions
|
13 |
from huggingface_hub.file_download import repo_folder_name
|
|
|
14 |
from transformers import AutoConfig
|
15 |
from transformers.pipelines.base import infer_framework_load_model
|
16 |
+
from safetensors.torch import save_file
|
17 |
|
18 |
|
19 |
+
def shared_pointers(tensors):
|
20 |
+
ptrs = defaultdict(list)
|
21 |
+
for k, v in tensors.items():
|
22 |
+
ptrs[v.data_ptr()].append(k)
|
23 |
+
failing = []
|
24 |
+
for ptr, names in ptrs.items():
|
25 |
+
if len(names) > 1:
|
26 |
+
failing.append(names)
|
27 |
+
return failing
|
28 |
+
|
29 |
+
def check_file_size(sf_filename: str, pt_filename: str):
|
30 |
sf_size = os.stat(sf_filename).st_size
|
31 |
pt_size = os.stat(pt_filename).st_size
|
32 |
|
33 |
if (sf_size - pt_size) / pt_size > 0.01:
|
34 |
+
raise RuntimeError(f"""The file size different is more than 1%:
|
|
|
35 |
- {sf_filename}: {sf_size}
|
36 |
- {pt_filename}: {pt_size}
|
37 |
+
""")
|
|
|
38 |
|
39 |
|
40 |
+
def rename(pt_filename: str) -> str:
|
41 |
local = pt_filename.replace(".bin", ".safetensors")
|
42 |
local = local.replace("pytorch_model", "model")
|
43 |
return local
|
44 |
|
45 |
|
46 |
+
def convert_multi(model_id: str) -> List["CommitOperationAdd"]:
|
47 |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json")
|
48 |
with open(filename, "r") as f:
|
49 |
data = json.load(f)
|
50 |
|
51 |
filenames = set(data["weight_map"].values())
|
|
|
52 |
for filename in filenames:
|
53 |
cached_filename = hf_hub_download(repo_id=model_id, filename=filename)
|
54 |
loaded = torch.load(cached_filename)
|
|
|
67 |
json.dump(newdata, f)
|
68 |
local_filenames.append(index)
|
69 |
|
70 |
+
operations = [CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames]
|
|
|
|
|
71 |
|
72 |
return operations
|
73 |
|
74 |
|
75 |
+
def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
|
76 |
sf_filename = "model.safetensors"
|
77 |
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
78 |
loaded = torch.load(filename)
|
79 |
|
80 |
local = os.path.join(folder, sf_filename)
|
81 |
+
shared = shared_pointers(loaded)
|
82 |
+
for shared_weights in shared:
|
83 |
+
for name in shared_weights[1:]:
|
84 |
+
loaded.pop(name)
|
85 |
+
|
86 |
+
# For tensors to be contiguous
|
87 |
+
loaded = {k: v.contiguous() for k, v in loaded.items()}
|
88 |
+
|
89 |
save_file(loaded, local, metadata={"format": "pt"})
|
90 |
|
91 |
check_file_size(local, filename)
|
|
|
93 |
operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)]
|
94 |
return operations
|
95 |
|
96 |
+
def check_final_model(model_id: str, folder: str):
|
|
|
97 |
config = hf_hub_download(repo_id=model_id, filename="config.json")
|
98 |
shutil.copy(config, os.path.join(folder, "config.json"))
|
99 |
config = AutoConfig.from_pretrained(folder)
|
100 |
+
|
101 |
_, pt_model = infer_framework_load_model(model_id, config)
|
102 |
+
_, sf_model = infer_framework_load_model(folder, config)
|
103 |
+
|
104 |
+
pt_model = pt_model
|
105 |
+
sf_model = sf_model
|
106 |
+
|
107 |
+
pt_params = pt_model.state_dict()
|
108 |
+
sf_params = sf_model.state_dict()
|
109 |
+
|
110 |
+
pt_shared = shared_pointers(pt_params)
|
111 |
+
sf_shared = shared_pointers(sf_params)
|
112 |
+
if pt_shared != sf_shared:
|
113 |
+
raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}")
|
114 |
+
|
115 |
+
sig = signature(pt_model.forward)
|
116 |
+
input_ids = torch.arange(10).unsqueeze(0)
|
117 |
+
pixel_values = torch.randn(1, 3, 224, 224)
|
118 |
+
input_values = torch.arange(1000).float().unsqueeze(0)
|
119 |
+
kwargs = {}
|
120 |
+
if "input_ids" in sig.parameters:
|
121 |
+
kwargs["input_ids"] = input_ids
|
122 |
+
if "decoder_input_ids" in sig.parameters:
|
123 |
+
kwargs["decoder_input_ids"] = input_ids
|
124 |
+
if "pixel_values" in sig.parameters:
|
125 |
+
kwargs["pixel_values"] = pixel_values
|
126 |
+
if "input_values" in sig.parameters:
|
127 |
+
kwargs["input_values"] = input_values
|
128 |
+
if "bbox" in sig.parameters:
|
129 |
+
kwargs["bbox"] = torch.zeros((1, 10, 4)).long()
|
130 |
+
if "image" in sig.parameters:
|
131 |
+
kwargs["image"] = pixel_values
|
132 |
+
|
133 |
+
|
134 |
+
if torch.cuda.is_available():
|
135 |
+
pt_model = pt_model.cuda()
|
136 |
+
sf_model = sf_model.cuda()
|
137 |
+
kwargs = {k: v.cuda() for k, v in kwargs.items()}
|
138 |
+
|
139 |
+
pt_logits = pt_model(**kwargs)[0]
|
140 |
+
sf_logits = sf_model(**kwargs)[0]
|
141 |
|
|
|
|
|
|
|
142 |
torch.testing.assert_close(sf_logits, pt_logits)
|
143 |
print(f"Model {model_id} is ok !")
|
144 |
|
145 |
+
def previous_pr(model_id: str, pr_title: str) -> Optional["Discussion"]:
|
146 |
+
for discussion in get_repo_discussions(repo_id=model_id):
|
147 |
+
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
|
148 |
+
return discussion
|
149 |
|
150 |
+
|
151 |
+
def convert(api: "HfApi", model_id: str, force: bool=False) -> Optional["CommitInfo"]:
|
152 |
+
pr_title = "Adding `safetensors` variant of this model"
|
153 |
info = api.model_info(model_id)
|
154 |
filenames = set(s.rfilename for s in info.siblings)
|
155 |
|
156 |
+
with TemporaryDirectory() as d:
|
157 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
158 |
+
os.makedirs(folder)
|
159 |
+
new_pr = None
|
160 |
+
try:
|
161 |
+
operations = None
|
162 |
+
pr = previous_pr(model_id, pr_title)
|
163 |
+
if ("model.safetensors" in filenames or "model_index.safetensors.index.json" in filenames) and not force:
|
164 |
+
raise RuntimeError(f"Model {model_id} is already converted, skipping..")
|
165 |
+
elif pr is not None and not force:
|
166 |
+
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
|
167 |
+
new_pr = pr
|
168 |
+
raise RuntimeError(f"Model {model_id} already has an open PR check out {url}")
|
169 |
+
elif "pytorch_model.bin" in filenames:
|
170 |
+
operations = convert_single(model_id, folder)
|
171 |
+
elif "pytorch_model.bin.index.json" in filenames:
|
172 |
+
operations = convert_multi(model_id, folder)
|
173 |
+
else:
|
174 |
+
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
|
175 |
+
|
176 |
+
if operations:
|
177 |
+
check_final_model(model_id, folder)
|
178 |
+
new_pr = api.create_commit(
|
179 |
+
repo_id=model_id,
|
180 |
+
operations=operations,
|
181 |
+
commit_message=pr_title,
|
182 |
+
create_pr=True,
|
183 |
+
)
|
184 |
+
finally:
|
185 |
+
shutil.rmtree(folder)
|
186 |
+
return new_pr
|
187 |
|
188 |
|
189 |
if __name__ == "__main__":
|
|
|
199 |
type=str,
|
200 |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
201 |
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--force",
|
204 |
+
action="store_true",
|
205 |
+
help="Create the PR even if it already exists of if the model was already converted.",
|
206 |
+
)
|
207 |
args = parser.parse_args()
|
208 |
model_id = args.model_id
|
209 |
api = HfApi()
|
210 |
+
convert(api, model_id, force=args.force)
|