Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
# Load the tokenizer and the model | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
# Load the best model weights | |
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu'))) | |
# Set the model to evaluation mode | |
model.eval() | |
# Define the text generation function | |
def generate_text(prompt, max_length=50, num_return_sequences=1): | |
inputs = tokenizer(prompt, return_tensors='pt') | |
outputs = model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=1.0 | |
) | |
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
gr.inputs.Slider(minimum=10, maximum=200, default=50, label="Max Length"), | |
gr.inputs.Slider(minimum=1, maximum=5, default=1, label="Number of Sequences") | |
], | |
outputs=gr.outputs.Textbox(), | |
title="GPT-2 Text Generator", | |
description="Enter a prompt to generate text using GPT-2.", | |
) | |
# Launch the Gradio interface | |
interface.launch() | |