sagar007 commited on
Commit
4ca155b
1 Parent(s): 02cf0bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -5
app.py CHANGED
@@ -1,12 +1,108 @@
1
-
 
2
  import torch
 
 
3
  import gradio as gr
4
- from model import GPT, GPTConfig # Assuming your model code is in a file named model.py
5
  import tiktoken
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Load the trained model
8
  def load_model(model_path):
9
- config = GPTConfig() # Adjust this if you've changed the default config
10
  model = GPT(config)
11
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
12
  model.eval()
@@ -20,8 +116,8 @@ def generate_text(prompt, max_length=100, temperature=0.7):
20
 
21
  with torch.no_grad():
22
  for _ in range(max_length):
23
- outputs = model(input_ids)
24
- next_token_logits = outputs[0][:, -1, :] / temperature
25
  next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1)
26
  input_ids = torch.cat([input_ids, next_token], dim=-1)
27
 
 
1
+ import os
2
+ import math
3
  import torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
  import gradio as gr
 
7
  import tiktoken
8
 
9
+ # GPT model code
10
+ class GPTConfig:
11
+ def __init__(self):
12
+ self.block_size = 1024
13
+ self.vocab_size = 50304
14
+ self.n_layer = 12
15
+ self.n_head = 12
16
+ self.n_embd = 768
17
+
18
+ class CausalSelfAttention(nn.Module):
19
+ def __init__(self, config):
20
+ super().__init__()
21
+ assert config.n_embd % config.n_head == 0
22
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
23
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
24
+ self.n_head = config.n_head
25
+ self.n_embd = config.n_embd
26
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
27
+
28
+ def forward(self, x):
29
+ B, T, C = x.size()
30
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
31
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
32
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
33
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
34
+ y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
35
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
36
+ return self.c_proj(y)
37
+
38
+ class MLP(nn.Module):
39
+ def __init__(self, config):
40
+ super().__init__()
41
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
42
+ self.gelu = nn.GELU()
43
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
44
+
45
+ def forward(self, x):
46
+ return self.c_proj(self.gelu(self.c_fc(x)))
47
+
48
+ class Block(nn.Module):
49
+ def __init__(self, config):
50
+ super().__init__()
51
+ self.ln_1 = nn.LayerNorm(config.n_embd)
52
+ self.attn = CausalSelfAttention(config)
53
+ self.ln_2 = nn.LayerNorm(config.n_embd)
54
+ self.mlp = MLP(config)
55
+
56
+ def forward(self, x):
57
+ x = x + self.attn(self.ln_1(x))
58
+ x = x + self.mlp(self.ln_2(x))
59
+ return x
60
+
61
+ class GPT(nn.Module):
62
+ def __init__(self, config):
63
+ super().__init__()
64
+ self.config = config
65
+ self.transformer = nn.ModuleDict(dict(
66
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
67
+ wpe = nn.Embedding(config.block_size, config.n_embd),
68
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
69
+ ln_f = nn.LayerNorm(config.n_embd),
70
+ ))
71
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
72
+ self.transformer.wte.weight = self.lm_head.weight
73
+ self.apply(self._init_weights)
74
+
75
+ def _init_weights(self, module):
76
+ if isinstance(module, nn.Linear):
77
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
78
+ if module.bias is not None:
79
+ torch.nn.init.zeros_(module.bias)
80
+ elif isinstance(module, nn.Embedding):
81
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
82
+
83
+ def forward(self, idx, targets=None):
84
+ device = idx.device
85
+ b, t = idx.size()
86
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
87
+ pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
88
+
89
+ tok_emb = self.transformer.wte(idx)
90
+ pos_emb = self.transformer.wpe(pos)
91
+ x = tok_emb + pos_emb
92
+ for block in self.transformer.h:
93
+ x = block(x)
94
+ x = self.transformer.ln_f(x)
95
+ logits = self.lm_head(x)
96
+
97
+ loss = None
98
+ if targets is not None:
99
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
100
+
101
+ return logits, loss
102
+
103
  # Load the trained model
104
  def load_model(model_path):
105
+ config = GPTConfig()
106
  model = GPT(config)
107
  model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
108
  model.eval()
 
116
 
117
  with torch.no_grad():
118
  for _ in range(max_length):
119
+ outputs, _ = model(input_ids)
120
+ next_token_logits = outputs[:, -1, :] / temperature
121
  next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1)
122
  input_ids = torch.cat([input_ids, next_token], dim=-1)
123