Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel, PeftConfig | |
import spaces | |
# Check if CUDA is available and set the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load model and tokenizer | |
MODEL_PATH = "sagar007/phi3.5_finetune" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
base_model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3.5-mini-instruct", | |
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
peft_config = PeftConfig.from_pretrained(MODEL_PATH) | |
model = PeftModel.from_pretrained(base_model, MODEL_PATH) | |
model.to(device) | |
model.eval() | |
def generate_response(instruction, max_length=512): | |
prompt = f"Instruction: {instruction}\nResponse:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length, | |
num_return_sequences=1, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response.split("Response:")[1].strip() | |
def chatbot(message, history): | |
response = generate_response(message) | |
return response | |
demo = gr.ChatInterface( | |
chatbot, | |
title="Fine-tuned Phi-3.5 Chatbot", | |
description="This is a chatbot using a fine-tuned version of the Phi-2 model.", | |
theme="default", | |
examples=[ | |
"Explain the concept of machine learning.", | |
"Write a short story about a robot learning to paint.", | |
"What are some effective ways to reduce stress?", | |
], | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() |