molgen_metric / utils2.py
saicharan2804
Added manual implementation of metrics
36173e1
import os
from collections import Counter
from functools import partial
import numpy as np
import pandas as pd
import scipy.sparse
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MACCSkeys
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
from rdkit.Chem.QED import qed
from rdkit.Chem.Scaffolds import MurckoScaffold
from rdkit.Chem import Descriptors
from moses.metrics.SA_Score import sascorer
from moses.metrics.NP_Score import npscorer
from moses.utils import mapper, get_mol
_base_dir = os.path.split(__file__)[0]
_mcf = pd.read_csv(os.path.join(_base_dir, 'mcf.csv'))
_pains = pd.read_csv(os.path.join(_base_dir, 'wehi_pains.csv'),
names=['smarts', 'names'])
_filters = [Chem.MolFromSmarts(x) for x in
_mcf.append(_pains, sort=True)['smarts'].values]
def canonic_smiles(smiles_or_mol):
mol = get_mol(smiles_or_mol)
if mol is None:
return None
return Chem.MolToSmiles(mol)
def logP(mol):
"""
Computes RDKit's logP
"""
return Chem.Crippen.MolLogP(mol)
def SA(mol):
"""
Computes RDKit's Synthetic Accessibility score
"""
return sascorer.calculateScore(mol)
def NP(mol):
"""
Computes RDKit's Natural Product-likeness score
"""
return npscorer.scoreMol(mol)
def QED(mol):
"""
Computes RDKit's QED score
"""
return qed(mol)
def weight(mol):
"""
Computes molecular weight for given molecule.
Returns float,
"""
return Descriptors.MolWt(mol)
def get_n_rings(mol):
"""
Computes the number of rings in a molecule
"""
return mol.GetRingInfo().NumRings()
def fragmenter(mol):
"""
fragment mol using BRICS and return smiles list
"""
fgs = AllChem.FragmentOnBRICSBonds(get_mol(mol))
fgs_smi = Chem.MolToSmiles(fgs).split(".")
return fgs_smi
def compute_fragments(mol_list, n_jobs=1):
"""
fragment list of mols using BRICS and return smiles list
"""
fragments = Counter()
for mol_frag in mapper(n_jobs)(fragmenter, mol_list):
fragments.update(mol_frag)
return fragments
def compute_scaffolds(mol_list, n_jobs=1, min_rings=2):
"""
Extracts a scafold from a molecule in a form of a canonic SMILES
"""
scaffolds = Counter()
map_ = mapper(n_jobs)
scaffolds = Counter(
map_(partial(compute_scaffold, min_rings=min_rings), mol_list))
if None in scaffolds:
scaffolds.pop(None)
return scaffolds
def compute_scaffold(mol, min_rings=2):
mol = get_mol(mol)
try:
scaffold = MurckoScaffold.GetScaffoldForMol(mol)
except (ValueError, RuntimeError):
return None
n_rings = get_n_rings(scaffold)
scaffold_smiles = Chem.MolToSmiles(scaffold)
if scaffold_smiles == '' or n_rings < min_rings:
return None
return scaffold_smiles
def average_agg_tanimoto(stock_vecs, gen_vecs,
batch_size=5000, agg='max',
device='cpu', p=1):
"""
For each molecule in gen_vecs finds closest molecule in stock_vecs.
Returns average tanimoto score for between these molecules
Parameters:
stock_vecs: numpy array <n_vectors x dim>
gen_vecs: numpy array <n_vectors' x dim>
agg: max or mean
p: power for averaging: (mean x^p)^(1/p)
"""
assert agg in ['max', 'mean'], "Can aggregate only max or mean"
agg_tanimoto = np.zeros(len(gen_vecs))
total = np.zeros(len(gen_vecs))
for j in range(0, stock_vecs.shape[0], batch_size):
x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
for i in range(0, gen_vecs.shape[0], batch_size):
y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
y_gen = y_gen.transpose(0, 1)
tp = torch.mm(x_stock, y_gen)
jac = (tp / (x_stock.sum(1, keepdim=True) +
y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
jac[np.isnan(jac)] = 1
if p != 1:
jac = jac**p
if agg == 'max':
agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
elif agg == 'mean':
agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
total[i:i + y_gen.shape[1]] += jac.shape[0]
if agg == 'mean':
agg_tanimoto /= total
if p != 1:
agg_tanimoto = (agg_tanimoto)**(1/p)
return np.mean(agg_tanimoto)
def fingerprint(smiles_or_mol, fp_type='maccs', dtype=None, morgan__r=2,
morgan__n=1024, *args, **kwargs):
"""
Generates fingerprint for SMILES
If smiles is invalid, returns None
Returns numpy array of fingerprint bits
Parameters:
smiles: SMILES string
type: type of fingerprint: [MACCS|morgan]
dtype: if not None, specifies the dtype of returned array
"""
fp_type = fp_type.lower()
molecule = get_mol(smiles_or_mol, *args, **kwargs)
if molecule is None:
return None
if fp_type == 'maccs':
keys = MACCSkeys.GenMACCSKeys(molecule)
keys = np.array(keys.GetOnBits())
fingerprint = np.zeros(166, dtype='uint8')
if len(keys) != 0:
fingerprint[keys - 1] = 1 # We drop 0-th key that is always zero
elif fp_type == 'morgan':
fingerprint = np.asarray(Morgan(molecule, morgan__r, nBits=morgan__n),
dtype='uint8')
else:
raise ValueError("Unknown fingerprint type {}".format(fp_type))
if dtype is not None:
fingerprint = fingerprint.astype(dtype)
return fingerprint
def fingerprints(smiles_mols_array, n_jobs=1, already_unique=False, *args,
**kwargs):
'''
Computes fingerprints of smiles np.array/list/pd.Series with n_jobs workers
e.g.fingerprints(smiles_mols_array, type='morgan', n_jobs=10)
Inserts np.NaN to rows corresponding to incorrect smiles.
IMPORTANT: if there is at least one np.NaN, the dtype would be float
Parameters:
smiles_mols_array: list/array/pd.Series of smiles or already computed
RDKit molecules
n_jobs: number of parralel workers to execute
already_unique: flag for performance reasons, if smiles array is big
and already unique. Its value is set to True if smiles_mols_array
contain RDKit molecules already.
'''
if isinstance(smiles_mols_array, pd.Series):
smiles_mols_array = smiles_mols_array.values
else:
smiles_mols_array = np.asarray(smiles_mols_array)
if not isinstance(smiles_mols_array[0], str):
already_unique = True
if not already_unique:
smiles_mols_array, inv_index = np.unique(smiles_mols_array,
return_inverse=True)
fps = mapper(n_jobs)(
partial(fingerprint, *args, **kwargs), smiles_mols_array
)
length = 1
for fp in fps:
if fp is not None:
length = fp.shape[-1]
first_fp = fp
break
fps = [fp if fp is not None else np.array([np.NaN]).repeat(length)[None, :]
for fp in fps]
if scipy.sparse.issparse(first_fp):
fps = scipy.sparse.vstack(fps).tocsr()
else:
fps = np.vstack(fps)
if not already_unique:
return fps[inv_index]
return fps
def mol_passes_filters(mol,
allowed=None,
isomericSmiles=False):
"""
Checks if mol
* passes MCF and PAINS filters,
* has only allowed atoms
* is not charged
"""
allowed = allowed or {'C', 'N', 'S', 'O', 'F', 'Cl', 'Br', 'H'}
mol = get_mol(mol)
if mol is None:
return False
ring_info = mol.GetRingInfo()
if ring_info.NumRings() != 0 and any(
len(x) >= 8 for x in ring_info.AtomRings()
):
return False
h_mol = Chem.AddHs(mol)
if any(atom.GetFormalCharge() != 0 for atom in mol.GetAtoms()):
return False
if any(atom.GetSymbol() not in allowed for atom in mol.GetAtoms()):
return False
if any(h_mol.HasSubstructMatch(smarts) for smarts in _filters):
return False
smiles = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles)
if smiles is None or len(smiles) == 0:
return False
if Chem.MolFromSmiles(smiles) is None:
return False
return True