# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import evaluate import datasets # import moses from moses import metrics import pandas as pd from tdc import Evaluator from tdc import Oracle _DESCRIPTION = """ Comprehensive suite of metrics designed to assess the performance of molecular generation models, for understanding how well a model can produce novel, chemically valid molecules that are relevant to specific research objectives. """ _KWARGS_DESCRIPTION = """ Args: generated_smiles (`list` of `string`): A collection of SMILES (Simplified Molecular Input Line Entry System) strings generated by the model, ideally encompassing more than 30,000 samples. train_smiles (`list` of `string`): The dataset of SMILES strings used to train the model, serving as a reference to evaluate the novelty and diversity of the generated molecules. Returns: Dectionary item containing various metrics to evaluate model performance """ _CITATION = """ @article{DBLP:journals/corr/abs-1811-12823, author = {Daniil Polykovskiy and Alexander Zhebrak and Benjam{\'{\i}}n S{\'{a}}nchez{-}Lengeling and Sergey Golovanov and Oktai Tatanov and Stanislav Belyaev and Rauf Kurbanov and Aleksey Artamonov and Vladimir Aladinskiy and Mark Veselov and Artur Kadurin and Sergey I. Nikolenko and Al{\'{a}}n Aspuru{-}Guzik and Alex Zhavoronkov}, title = {Molecular Sets {(MOSES):} {A} Benchmarking Platform for Molecular Generation Models}, journal = {CoRR}, volume = {abs/1811.12823}, year = {2018}, url = {http://arxiv.org/abs/1811.12823}, eprinttype = {arXiv}, eprint = {1811.12823}, timestamp = {Fri, 26 Nov 2021 15:34:30 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1811-12823.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class molgen_metric(evaluate.Measurement): """TODO: Short description of my evaluation module.""" def _info(self): return evaluate.MeasurementInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "generated_smiles": datasets.Sequence(datasets.Value("string")), "train_smiles": datasets.Sequence(datasets.Value("string")), } if self.config_name == "multilabel" else { "generated_smiles": datasets.Value("string"), "train_smiles": datasets.Value("string"), } ), reference_urls=["https://github.com/molecularsets/moses", "https://tdcommons.ai/functions/oracles/"], ) def _compute(self, generated_smiles, train_smiles = None): Results = metrics.get_all_metrics(gen = generated_smiles, train= train_smiles) generated_smiles = [s for s in generated_smiles if s != ''] evaluator = Evaluator(name = 'KL_Divergence') KL_Divergence = evaluator(generated_smiles, train_smiles) Results.update({ "KL_Divergence": KL_Divergence, }) oracle_list = [ 'QED', 'SA', 'MPO', 'GSK3B', 'JNK3', 'DRD2', 'LogP', 'Rediscovery', 'Similarity', 'Median', 'Isomers', 'Valsartan_SMARTS', 'Hop' ] for oracle_name in oracle_list: oracle = Oracle(name=oracle_name) if oracle_name in ['Rediscovery', 'MPO', 'Similarity', 'Median', 'Isomers', 'Hop']: score = oracle(generated_smiles) if isinstance(score, dict): score = {key: sum(values)/len(values) for key, values in score.items()} else: score = oracle(generated_smiles) if isinstance(score, list): score = sum(score) / len(score) Results.update({f"{oracle_name}": score}) keys_to_remove = ["FCD/TestSF", "SNN/TestSF", "Frag/TestSF", "Scaf/TestSF"] for key in keys_to_remove: Results.pop(key, None) return {"results": Results}