Sakalti commited on
Commit
8c34774
1 Parent(s): ae529a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -60
app.py CHANGED
@@ -1,66 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Qwen/Qwen2.5-0.5b-Instruct")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- # ストリーミングを無効にして、単一の応答を取得
29
- response = client.chat_completion(
30
- messages,
31
- max_tokens=max_tokens,
32
- temperature=temperature,
33
- top_p=top_p,
34
  )
35
-
36
- return response.choices[0].message.content
37
-
38
- """
39
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
40
- """
41
- demo = gr.ChatInterface(
42
- respond,
43
- additional_inputs=[
44
- gr.Textbox(value="ユーザーの質問や依頼にのみ答えてください。ポジティブに答えてください", label="System message"),
 
 
 
 
45
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大"),
46
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
47
- gr.Slider(
48
- minimum=0.1,
49
- maximum=1.0,
50
- value=0.95,
51
- step=0.05,
52
- label="Top-p (核 sampling)",
53
- ),
54
- ],
55
- examples=[
56
- ["日本で有名なものと言えば"],
57
- ["レポートを書いてくれる?"],
58
- ["C#で素数を判定するコードを書いて"],
59
- ["250の約数は?"],
60
- ],
61
- concurrency_limit=32 # 例: 同時に4つのリクエストを処理
62
- )
63
 
 
 
 
64
 
65
- if __name__ == "__main__":
66
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # モデルとトークナイザーの読み込み
5
+ model_name = "Qwen/Qwen2.5-0.5B-Instruct"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Slow tokenizerを使用
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ # 生成用の関数
10
+ def respond(input_text, system_message, max_tokens, temperature, top_p):
11
+ # システムメッセージとユーザー入力を結合
12
+ input_text_combined = f"システム: {system_message}\nユーザー: {input_text}\n"
13
+
14
+ # トークン化
15
+ inputs = tokenizer(input_text_combined, return_tensors="pt")
16
+
17
+ # モデルに入力を渡して生成
18
+ outputs = model.generate(
19
+ **inputs,
20
+ max_length=max_tokens, # 最大トークン数
21
+ top_p=top_p, # nucleus sampling のパラメータ
22
+ do_sample=True, # サンプリングを有効にする
23
+ temperature=temperature, # 生成の温度
24
+ pad_token_id=tokenizer.eos_token_id
 
 
 
 
 
 
 
 
 
25
  )
26
+
27
+ # トークンをテキストにデコード
28
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
+
30
+ # レスポンスを返す
31
+ return response
32
+
33
+ # Gradioインターフェースの作成
34
+ with gr.Blocks() as demo:
35
+ gr.Markdown("## rinna/japanese-gpt-neox-small チャットボット")
36
+
37
+ # 追加の入力フィールドをリストで設定
38
+ additional_inputs = [
39
+ gr.Textbox(value="ユーザーの質問と依頼のみに答えてください。ポジティブに.", label="システムメッセージ"),
40
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="新規トークン最大"),
41
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
42
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (核サンプリング)")
43
+ ]
44
+
45
+ # ユーザーのメイン入力
46
+ input_text = gr.Textbox(label="ユーザー入力", placeholder="質問やテキストを入力してください")
47
+
48
+ # 出力エリア("respond"という名前に変更)
49
+ output_text = gr.Textbox(label="respond")
 
 
 
 
 
 
 
 
50
 
51
+ # ボタンとアクション
52
+ submit_button = gr.Button("送信")
53
+ submit_button.click(respond, inputs=[input_text] + additional_inputs, outputs=output_text)
54
 
55
+ # インターフェースの起動
56
+ demo.launch()