Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
from PIL import Image | |
import uuid | |
import random | |
from huggingface_hub import hf_hub_download | |
import spaces | |
MAX_64_BIT_INT = 2**63 - 1 | |
DEFAULT_SEED = 42 | |
DEFAULT_OUTPUT_FOLDER = "outputs" | |
pipe = StableVideoDiffusionPipeline.from_pretrained("vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16") | |
pipe.to("cpu") | |
def resize_image(image, output_size=(1024, 576)): | |
target_aspect = output_size[0] / output_size[1] | |
image_aspect = image.width / image.height | |
if image_aspect > target_aspect: | |
new_height = output_size[1] | |
new_width = int(new_height * image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
left = (new_width - output_size[0]) / 2 | |
top = 0 | |
right = (new_width + output_size[0]) / 2 | |
bottom = output_size[1] | |
else: | |
new_width = output_size[0] | |
new_height = int(new_width / image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
left = 0 | |
top = (new_height - output_size[1]) / 2 | |
right = output_size[0] | |
bottom = (new_height + output_size[1]) / 2 | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return cropped_image | |
def generate_video(image, seed, motion_bucket_id, fps_id): | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
generator = torch.manual_seed(seed) | |
frames = pipe(image, decode_chunk_size=3, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0] | |
return frames | |
def export_video(frames, video_path, fps_id): | |
export_to_video(frames, video_path, fps=fps_id) | |
def sample( | |
image, | |
seed=DEFAULT_SEED, | |
randomize_seed=True, | |
motion_bucket_id=127, | |
fps_id=6, | |
version="svd_xt", | |
cond_aug=0.02, | |
decoding_t=3, | |
device="cuda", | |
output_folder=DEFAULT_OUTPUT_FOLDER, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_64_BIT_INT) | |
generator = torch.manual_seed(seed) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
frames = generate_video(image, seed, motion_bucket_id, fps_id) | |
export_video(frames, video_path, fps_id) | |
torch.manual_seed(seed) | |
return video_path, frames, seed | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type="pil") | |
with gr.Accordion("Advanced options", open=False): | |
seed = gr.Slider(label="Seed", value=DEFAULT_SEED, randomize=True, minimum=0, maximum=MAX_64_BIT_INT, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) | |
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) | |
generate_btn = gr.Button(value="Animate", variant="primary") | |
with gr.Column(): | |
video = gr.Video(label="Generated video") | |
gallery = gr.Gallery(label="Generated frames") | |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video") | |
if __name__ == "__main__": | |
demo.launch(share=True, show_api=False) |