Spaces:
Running
Running
File size: 7,000 Bytes
714bf26 450e8ba 714bf26 a681a6f 714bf26 a681a6f 714bf26 a681a6f 714bf26 a681a6f 714bf26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import numpy as np
import torch
import torchvision
from torchvision.transforms import Resize
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.openpose import OpenposeDetector
import decord
decord.bridge.set_bridge('torch')
apply_canny = CannyDetector()
apply_openpose = OpenposeDetector()
def add_watermark(image, im_size_h, im_size_w, watermark_path="__assets__/picsart_watermark.jpg",
wmsize=16, bbuf=5, opacity=0.9):
'''
Creates a watermark on the saved inference image.
We request that you do not remove this to properly assign credit to
Shi-Lab's work.
'''
watermark = Image.open(watermark_path).resize((wmsize, wmsize))
loc_h = im_size_h - wmsize - bbuf
loc_w = im_size_w - wmsize - bbuf
image[loc_h:-bbuf, loc_w:-bbuf, :] = watermark
return image
def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def pre_process_pose(input_video, apply_pose_detect: bool = True):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
img = HWC3(img)
if apply_pose_detect:
detected_map, _ = apply_openpose(img)
else:
detected_map = img
detected_map = HWC3(detected_map)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def create_video(frames, fps, rescale=False, path=None):
if path is None:
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'movie.mp4')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
h_, w_, _ = x.shape
x = add_watermark(x, im_size_h=h_, im_size_w=w_)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
def create_gif(frames, fps, rescale=False):
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'canny_db.gif')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
h_, w_, _ = x.shape
x = add_watermark(x, im_size_h=h_, im_size_w=w_)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
vr = decord.VideoReader(video_path)
video = vr.get_batch(range(0, len(vr))).asnumpy()
initial_fps = vr.get_avg_fps()
if output_fps == -1:
output_fps = int(initial_fps)
if end_t == -1:
end_t = len(vr) / initial_fps
else:
end_t = min(len(vr) / initial_fps, end_t)
assert 0 <= start_t < end_t
assert output_fps > 0
f, h, w, c = video.shape
start_f_ind = int(start_t * initial_fps)
end_f_ind = int(end_t * initial_fps)
num_f = int((end_t - start_t) * output_fps)
sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
video = video[sample_idx]
video = rearrange(video, "f h w c -> f c h w")
video = torch.Tensor(video).to(device).to(dtype)
if h > w:
w = int(w * resolution / h)
w = w - w % 8
h = resolution - resolution % 8
video = Resize((h, w))(video)
else:
h = int(h * resolution / w)
h = h - h % 8
w = resolution - resolution % 8
video = Resize((h, w))(video)
if normalize:
video = video / 127.5 - 1.0
return video, output_fps
def post_process_gif(list_of_results, image_resolution):
output_file = "/tmp/ddxk.gif"
imageio.mimsave(output_file, list_of_results, fps=4)
return output_file
class CrossFrameAttnProcessor:
def __init__(self, unet_chunk_size=2):
self.unet_chunk_size = unet_chunk_size
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.cross_attention_norm:
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# Sparse Attention
if not is_cross_attention:
video_length = key.size()[0] // self.unet_chunk_size
# former_frame_index = torch.arange(video_length) - 1
# former_frame_index[0] = 0
former_frame_index = [0] * video_length
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = key[:, former_frame_index]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = value[:, former_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
|