File size: 21,145 Bytes
ccfd1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7762b
 
 
ccfd1d5
 
 
 
 
 
 
 
 
 
2d7762b
ccfd1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7762b
 
 
ccfd1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
from diffusers.utils import deprecate, logging, BaseOutput
from einops import rearrange, repeat
from torch.nn.functional import grid_sample
import torchvision.transforms as T
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker

@dataclass
class TextToVideoPipelineOutput(BaseOutput):
    videos: Union[torch.Tensor, np.ndarray]
    code: Union[torch.Tensor, np.ndarray]



def coords_grid(batch, ht, wd, device):
    # Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
    coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
    coords = torch.stack(coords[::-1], dim=0).float()
    return coords[None].repeat(batch, 1, 1, 1)



class TextToVideoPipeline(StableDiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
        ):
        #super().__init__(*args,**kwargs)
        super().__init__(vae,text_encoder,tokenizer,unet,scheduler,safety_checker,feature_extractor,requires_safety_checker)


    def DDPM_forward(self, x0, t0, tMax, generator, device, shape, text_embeddings):
        rand_device = "cpu" if device.type == "mps" else device
   
        if x0 is None:
            return torch.randn(shape, generator=generator, device=rand_device, dtype=text_embeddings.dtype).to(device)
        else:
            eps = torch.randn_like(x0, dtype=text_embeddings.dtype).to(device)
            alpha_vec = torch.prod(self.scheduler.alphas[t0:tMax])
            xt = torch.sqrt(alpha_vec) * x0 + \
                torch.sqrt(1-alpha_vec) * eps
            return xt


    def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, video_length, height //
                 self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            rand_device = "cpu" if device.type == "mps" else device

            if isinstance(generator, list):
                shape = (1,) + shape[1:]
                latents = [
                    torch.randn(
                        shape, generator=generator[i], device=rand_device, dtype=dtype)
                    for i in range(batch_size)
                ]
                latents = torch.cat(latents, dim=0).to(device)
            else:
                latents = torch.randn(
                    shape, generator=generator, device=rand_device, dtype=dtype).to(device)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents



    def warp_latents(self, latents, reference_flow):
        _, _, H, W = reference_flow.size()
        b, c, f, h, w = latents.size()
        coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
        coords_t0 = coords0 + reference_flow
        coords_t0[:, 0] /= W
        coords_t0[:, 1] /= H
        coords_t0 = coords_t0 * 2.0 - 1.0
        coords_t0 = T.Resize((h, w))(coords_t0)
        coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
        latents_0 = latents[:, :, 0]
        latents_0 = latents_0.repeat(f, 1, 1, 1)
        warped = grid_sample(latents_0, coords_t0,
                                mode='nearest', padding_mode='reflection')
        warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
        return warped

    def warp_latents_independently(self, latents, reference_flow):
        _, _, H, W = reference_flow.size()
        b, c, f, h, w = latents.size()
        assert b == 1
        coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
        coords_t0 = coords0 + reference_flow

        coords_t0[:, 0] /= W
        coords_t0[:, 1] /= H
        coords_t0 = coords_t0 * 2.0 - 1.0

        coords_t0 = T.Resize((h, w))(coords_t0)

        coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')

        latents_0 = rearrange(latents[0], 'c f h w -> f  c  h w')

        warped = grid_sample(latents_0, coords_t0,
                             mode='nearest', padding_mode='reflection')
        warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
        return warped

    def DDIM_backward(self, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, null_embs, text_embeddings, latents_local, latents_dtype, guidance_scale, guidance_stop_step, callback, callback_steps, extra_step_kwargs, num_warmup_steps):
        entered = False
        
        f = latents_local.shape[2]
        latents_local = rearrange(latents_local,"b c f w h -> (b f) c w h")
        
        latents = latents_local.detach().clone()
        x_t0_1 = None
        x_t1_1 = None
        
        

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if t > skip_t:
                    continue
                else:
                    if not entered:
                        print(
                            f"Continue DDIM with i = {i}, t = {t}, latent = {latents.shape}, device = {latents.device}, type = {latents.dtype}")
                        entered = True

                latents = latents.detach()
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat(
                    [latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t)

                # predict the noise residual
                with torch.no_grad():
                    if null_embs is not None:
                        text_embeddings[0] = null_embs[i][0]
                    te = torch.cat([repeat(text_embeddings[0,:,:], "c k -> f c k",f=f),repeat(text_embeddings[1,:,:], "c k -> f c k",f=f)]) 
                    noise_pred = self.unet(
                        latent_model_input, t, encoder_hidden_states=te).sample.to(dtype=latents_dtype)

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(
                        2)
                    noise_pred = noise_pred_uncond + guidance_scale * \
                        (noise_pred_text - noise_pred_uncond)

                if i >= guidance_stop_step * len(timesteps):
                    alpha = 0
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs).prev_sample
                # latents = latents - alpha * grads / (torch.norm(grads) + 1e-10)
                # call the callback, if provided

                if i < len(timesteps)-1 and timesteps[i+1] == t0:
                    x_t0_1 = latents.detach().clone()
                    print(f"latent t0 found at i = {i}, t = {t}")
                elif i < len(timesteps)-1 and timesteps[i+1] == t1:
                    x_t1_1 = latents.detach().clone()
                    print(f"latent t1 found at i={i}, t = {t}")

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        
        latents = rearrange(latents,"(b f) c w h -> b c f  w h",f = f)
        
       
        
        res = {"x0": latents.detach().clone()}
        if x_t0_1 is not None:
            x_t0_1 = rearrange(x_t0_1,"(b f) c w h -> b c f  w h",f = f)
            res["x_t0_1"] = x_t0_1.detach().clone()
        if x_t1_1 is not None:
            x_t1_1 = rearrange(x_t1_1,"(b f) c w h -> b c f  w h",f = f)
            res["x_t1_1"] = x_t1_1.detach().clone()
        return res

    def decode_latents(self, latents):
        video_length = latents.shape[2]
        latents = 1 / 0.18215 * latents
        latents = rearrange(latents, "b c f h w -> (b f) c h w")
        video = self.vae.decode(latents).sample
        video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
        video = (video / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        return video



    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        video_length: Optional[int],
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        guidance_stop_step: float = 0.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator,
                                  List[torch.Generator]]] = None,
        xT: Optional[torch.FloatTensor] = None,
        null_embs: Optional[torch.FloatTensor] = None,
        #motion_field_strength: float = 12,
        motion_field_strength_x: float = 12,
        motion_field_strength_y: float = 12, 
        output_type: Optional[str] = "tensor",
        return_dict: bool = True,
        callback: Optional[Callable[[
            int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        use_motion_field: bool = True,
        smooth_bg: bool = True,
        smooth_bg_strength: float = 0.4,
        **kwargs,
    ):
        print(motion_field_strength_x,motion_field_strength_y)
        print(f" Use: Motion field = {use_motion_field}")
        print(f" Use: Background smoothing = {smooth_bg}")
        # Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # Encode input prompt
        text_embeddings = self._encode_prompt(
            prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
        )
        
        # Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        
        # print(f" Latent shape = {latents.shape}")

        # Prepare latent variables
        num_channels_latents = self.unet.in_channels

        xT = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            video_length,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            xT,
        )
        dtype = xT.dtype

        # when motion field is not used, augment with random latent codes
        if use_motion_field:
            xT = xT[:, :, :1]
        else:
            if xT.shape[2] < video_length:
                xT_missing = self.prepare_latents(
                    batch_size * num_videos_per_prompt,
                    num_channels_latents,
                    video_length-xT.shape[2],
                    height,
                    width,
                    text_embeddings.dtype,
                    device,
                    generator,
                    None,
                )
                xT = torch.cat([xT, xT_missing], dim=2)
        

        xInit = xT.clone()
        t0 = kwargs["t0"]
        t1 = kwargs["t1"]
        x_t1_1 = None

        
        # Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        # Denoising loop
        num_warmup_steps = len(timesteps) - \
            num_inference_steps * self.scheduler.order
       


        ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
                                          null_embs=null_embs, text_embeddings=text_embeddings, latents_local=xT, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
        
        x0 = ddim_res["x0"].detach()
        
        if "x_t0_1" in ddim_res:
            x_t0_1 = ddim_res["x_t0_1"].detach()
        if "x_t1_1" in ddim_res:
            x_t1_1 = ddim_res["x_t1_1"].detach()
        del ddim_res
        del xT

        if use_motion_field:
            del x0
            shape = (batch_size, num_channels_latents, 1, height //
                     self.vae_scale_factor, width // self.vae_scale_factor)
       
       
            x_t0_k = x_t0_1[:, :, :1, :, :].repeat(1, 1, video_length-1, 1, 1)

            
            reference_flow = torch.zeros(
                (video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
            for fr_idx in range(video_length-1):
                #reference_flow[fr_idx, :, :, :] = motion_field_strength*(fr_idx+1)
                reference_flow[fr_idx, 0, :, :] = motion_field_strength_x*(fr_idx+1)
                reference_flow[fr_idx, 1, :, :] = motion_field_strength_y*(fr_idx+1)

            for idx, latent in enumerate(x_t0_k):
                x_t0_k[idx] = self.warp_latents_independently(
                    latent[None], reference_flow)

            # assuming t0=t1=1000, if t0 = 1000
            if t1 > t0:
                x_t1_k = self.DDPM_forward(
                    x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
            else:
                x_t1_k = x_t0_k

            if x_t1_1 is None:
                raise Exception

            x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2).clone().detach()

            ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
                                          null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)

            x0 = ddim_res["x0"].detach()
            del ddim_res
        else:
            x_t1 = x_t1_1.clone()
            x_t1_1 = x_t1_1[:,:,:1,:,:].clone()
            x_t1_k = x_t1_1[:,:,1:,:,:].clone()
            x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
            x_t0_1 = x_t0_1[:,:,:1,:,:].clone()

        # smooth background
        if smooth_bg:
            h, w = x0.shape[3], x0.shape[4]
            M_FG = torch.zeros((batch_size, video_length, h, w),
                               device=x0.device).to(x0.dtype)
            for batch_idx, x0_b in enumerate(x0):
                z0_b = self.decode_latents(x0_b[None]).detach()
                z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
                for frame_idx, z0_f in enumerate(z0_b):
                    z0_f = torch.round(
                        z0_f * 255).cpu().numpy().astype(np.uint8)
                    # apply SOD detection
                    m_f = torch.tensor(self.sod_model.process_data(
                        z0_f), device=x0.device).to(x0.dtype)
                    mask = T.Resize(
                        size=(h, w), interpolation=T.InterpolationMode.NEAREST)(m_f[None])
                    kernel = torch.ones(5, 5, device=x0.device, dtype=x0.dtype)
                    mask = dilation(mask[None].to(x0.device), kernel)[0]
                    M_FG[batch_idx, frame_idx, :, :] = mask

  
            x_t1_1_fg_masked = x_t1_1 * \
                (1 - repeat(M_FG[:, 0, :, :],
                            "b w h -> b c 1 w h", c=x_t1_1.shape[1]))


            x_t1_1_fg_masked_moved = []
            for batch_idx, x_t1_1_fg_masked_b in enumerate(x_t1_1_fg_masked):
                x_t1_fg_masked_b = x_t1_1_fg_masked_b.clone()

                x_t1_fg_masked_b = x_t1_fg_masked_b.repeat(
                    1, video_length-1, 1, 1)
                if use_motion_field:
                    x_t1_fg_masked_b = x_t1_fg_masked_b[None]
                    x_t1_fg_masked_b = self.warp_latents_independently(
                        x_t1_fg_masked_b, reference_flow)
                else:
                    x_t1_fg_masked_b = x_t1_fg_masked_b[None]

                x_t1_fg_masked_b = torch.cat(
                    [x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
                x_t1_1_fg_masked_moved.append(x_t1_fg_masked_b)

            x_t1_1_fg_masked_moved = torch.cat(x_t1_1_fg_masked_moved, dim=0)

            M_FG_1 = M_FG[:, :1, :, :]

            M_FG_warped = []
            for batch_idx, m_fg_1_b in enumerate(M_FG_1):
                m_fg_1_b = m_fg_1_b[None, None]
                m_fg_b = m_fg_1_b.repeat(1, 1, video_length-1, 1, 1)
                if  use_motion_field:
                    m_fg_b = self.warp_latents_independently(
                        m_fg_b.clone(), reference_flow)
                M_FG_warped.append(
                    torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))

            M_FG_warped = torch.cat(M_FG_warped, dim=0)

            channels = x0.shape[1]

            M_BG = (1-M_FG) * (1 - M_FG_warped)
            M_BG = repeat(M_BG, "b f h w -> b c f h w", c=channels)
            a_convex = smooth_bg_strength
  
            x_t1_blending = (1-M_BG) * x_t1 + M_BG * (a_convex *
                                                      x_t1 + (1-a_convex) * x_t1_1_fg_masked_moved)

            '''
            x_t1_blending = self.DDPM_forward(
                x0=x_t1_blending, t0=t1, tMax=961, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
            t1 = 961
            '''
            latents = x_t1_blending

            ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
                                          null_embs=null_embs, text_embeddings=text_embeddings, latents_local=latents, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
            x0 = ddim_res["x0"].detach()
            del ddim_res


        # Post-processing
        video_list = []
        for latent in x0:
            tmp = latent[None]
            print("Frame spit shape", tmp.shape)
            frames = []
            for fr_split in range(tmp.shape[2]):
                print("frame decoding")
                frames.append(self.decode_latents(
                    tmp[:, :, fr_split, None]).detach())

            video_list.append(torch.cat(frames, dim=2).cpu().float().numpy())

        # Convert to tensor
        videos = []
        if output_type == "tensor":
            for video in video_list:
                videos.append(torch.from_numpy(video))
        if output_type == 'numpy':
            for video in video_list:
                videos.append(rearrange(video, 'b c f h w -> (b f) h w c'))
        if not return_dict:
            return video

        return TextToVideoPipelineOutput(videos=videos, code=torch.split(xInit.detach().cpu(), 1, dim=0))