Spaces:
Running
Running
File size: 21,145 Bytes
ccfd1d5 2d7762b ccfd1d5 2d7762b ccfd1d5 2d7762b ccfd1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
from diffusers.utils import deprecate, logging, BaseOutput
from einops import rearrange, repeat
from torch.nn.functional import grid_sample
import torchvision.transforms as T
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
@dataclass
class TextToVideoPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
code: Union[torch.Tensor, np.ndarray]
def coords_grid(batch, ht, wd, device):
# Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch, 1, 1, 1)
class TextToVideoPipeline(StableDiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
#super().__init__(*args,**kwargs)
super().__init__(vae,text_encoder,tokenizer,unet,scheduler,safety_checker,feature_extractor,requires_safety_checker)
def DDPM_forward(self, x0, t0, tMax, generator, device, shape, text_embeddings):
rand_device = "cpu" if device.type == "mps" else device
if x0 is None:
return torch.randn(shape, generator=generator, device=rand_device, dtype=text_embeddings.dtype).to(device)
else:
eps = torch.randn_like(x0, dtype=text_embeddings.dtype).to(device)
alpha_vec = torch.prod(self.scheduler.alphas[t0:tMax])
xt = torch.sqrt(alpha_vec) * x0 + \
torch.sqrt(1-alpha_vec) * eps
return xt
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, video_length, height //
self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
rand_device = "cpu" if device.type == "mps" else device
if isinstance(generator, list):
shape = (1,) + shape[1:]
latents = [
torch.randn(
shape, generator=generator[i], device=rand_device, dtype=dtype)
for i in range(batch_size)
]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(
shape, generator=generator, device=rand_device, dtype=dtype).to(device)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def warp_latents(self, latents, reference_flow):
_, _, H, W = reference_flow.size()
b, c, f, h, w = latents.size()
coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
coords_t0 = coords0 + reference_flow
coords_t0[:, 0] /= W
coords_t0[:, 1] /= H
coords_t0 = coords_t0 * 2.0 - 1.0
coords_t0 = T.Resize((h, w))(coords_t0)
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
latents_0 = latents[:, :, 0]
latents_0 = latents_0.repeat(f, 1, 1, 1)
warped = grid_sample(latents_0, coords_t0,
mode='nearest', padding_mode='reflection')
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
return warped
def warp_latents_independently(self, latents, reference_flow):
_, _, H, W = reference_flow.size()
b, c, f, h, w = latents.size()
assert b == 1
coords0 = coords_grid(f, H, W, device=latents.device).to(latents.dtype)
coords_t0 = coords0 + reference_flow
coords_t0[:, 0] /= W
coords_t0[:, 1] /= H
coords_t0 = coords_t0 * 2.0 - 1.0
coords_t0 = T.Resize((h, w))(coords_t0)
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
warped = grid_sample(latents_0, coords_t0,
mode='nearest', padding_mode='reflection')
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
return warped
def DDIM_backward(self, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, null_embs, text_embeddings, latents_local, latents_dtype, guidance_scale, guidance_stop_step, callback, callback_steps, extra_step_kwargs, num_warmup_steps):
entered = False
f = latents_local.shape[2]
latents_local = rearrange(latents_local,"b c f w h -> (b f) c w h")
latents = latents_local.detach().clone()
x_t0_1 = None
x_t1_1 = None
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if t > skip_t:
continue
else:
if not entered:
print(
f"Continue DDIM with i = {i}, t = {t}, latent = {latents.shape}, device = {latents.device}, type = {latents.dtype}")
entered = True
latents = latents.detach()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
# predict the noise residual
with torch.no_grad():
if null_embs is not None:
text_embeddings[0] = null_embs[i][0]
te = torch.cat([repeat(text_embeddings[0,:,:], "c k -> f c k",f=f),repeat(text_embeddings[1,:,:], "c k -> f c k",f=f)])
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=te).sample.to(dtype=latents_dtype)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(
2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
if i >= guidance_stop_step * len(timesteps):
alpha = 0
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs).prev_sample
# latents = latents - alpha * grads / (torch.norm(grads) + 1e-10)
# call the callback, if provided
if i < len(timesteps)-1 and timesteps[i+1] == t0:
x_t0_1 = latents.detach().clone()
print(f"latent t0 found at i = {i}, t = {t}")
elif i < len(timesteps)-1 and timesteps[i+1] == t1:
x_t1_1 = latents.detach().clone()
print(f"latent t1 found at i={i}, t = {t}")
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = rearrange(latents,"(b f) c w h -> b c f w h",f = f)
res = {"x0": latents.detach().clone()}
if x_t0_1 is not None:
x_t0_1 = rearrange(x_t0_1,"(b f) c w h -> b c f w h",f = f)
res["x_t0_1"] = x_t0_1.detach().clone()
if x_t1_1 is not None:
x_t1_1 = rearrange(x_t1_1,"(b f) c w h -> b c f w h",f = f)
res["x_t1_1"] = x_t1_1.detach().clone()
return res
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = self.vae.decode(latents).sample
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
return video
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
video_length: Optional[int],
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
guidance_stop_step: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_videos_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator,
List[torch.Generator]]] = None,
xT: Optional[torch.FloatTensor] = None,
null_embs: Optional[torch.FloatTensor] = None,
#motion_field_strength: float = 12,
motion_field_strength_x: float = 12,
motion_field_strength_y: float = 12,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[
int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
use_motion_field: bool = True,
smooth_bg: bool = True,
smooth_bg_strength: float = 0.4,
**kwargs,
):
print(motion_field_strength_x,motion_field_strength_y)
print(f" Use: Motion field = {use_motion_field}")
print(f" Use: Background smoothing = {smooth_bg}")
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# print(f" Latent shape = {latents.shape}")
# Prepare latent variables
num_channels_latents = self.unet.in_channels
xT = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
video_length,
height,
width,
text_embeddings.dtype,
device,
generator,
xT,
)
dtype = xT.dtype
# when motion field is not used, augment with random latent codes
if use_motion_field:
xT = xT[:, :, :1]
else:
if xT.shape[2] < video_length:
xT_missing = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
video_length-xT.shape[2],
height,
width,
text_embeddings.dtype,
device,
generator,
None,
)
xT = torch.cat([xT, xT_missing], dim=2)
xInit = xT.clone()
t0 = kwargs["t0"]
t1 = kwargs["t1"]
x_t1_1 = None
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Denoising loop
num_warmup_steps = len(timesteps) - \
num_inference_steps * self.scheduler.order
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=xT, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
x0 = ddim_res["x0"].detach()
if "x_t0_1" in ddim_res:
x_t0_1 = ddim_res["x_t0_1"].detach()
if "x_t1_1" in ddim_res:
x_t1_1 = ddim_res["x_t1_1"].detach()
del ddim_res
del xT
if use_motion_field:
del x0
shape = (batch_size, num_channels_latents, 1, height //
self.vae_scale_factor, width // self.vae_scale_factor)
x_t0_k = x_t0_1[:, :, :1, :, :].repeat(1, 1, video_length-1, 1, 1)
reference_flow = torch.zeros(
(video_length-1, 2, 512, 512), device=x_t0_1.device, dtype=x_t0_1.dtype)
for fr_idx in range(video_length-1):
#reference_flow[fr_idx, :, :, :] = motion_field_strength*(fr_idx+1)
reference_flow[fr_idx, 0, :, :] = motion_field_strength_x*(fr_idx+1)
reference_flow[fr_idx, 1, :, :] = motion_field_strength_y*(fr_idx+1)
for idx, latent in enumerate(x_t0_k):
x_t0_k[idx] = self.warp_latents_independently(
latent[None], reference_flow)
# assuming t0=t1=1000, if t0 = 1000
if t1 > t0:
x_t1_k = self.DDPM_forward(
x0=x_t0_k, t0=t0, tMax=t1, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
else:
x_t1_k = x_t0_k
if x_t1_1 is None:
raise Exception
x_t1 = torch.cat([x_t1_1, x_t1_k], dim=2).clone().detach()
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=x_t1, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
x0 = ddim_res["x0"].detach()
del ddim_res
else:
x_t1 = x_t1_1.clone()
x_t1_1 = x_t1_1[:,:,:1,:,:].clone()
x_t1_k = x_t1_1[:,:,1:,:,:].clone()
x_t0_k = x_t0_1[:, :, 1:, :, :].clone()
x_t0_1 = x_t0_1[:,:,:1,:,:].clone()
# smooth background
if smooth_bg:
h, w = x0.shape[3], x0.shape[4]
M_FG = torch.zeros((batch_size, video_length, h, w),
device=x0.device).to(x0.dtype)
for batch_idx, x0_b in enumerate(x0):
z0_b = self.decode_latents(x0_b[None]).detach()
z0_b = rearrange(z0_b[0], "c f h w -> f h w c")
for frame_idx, z0_f in enumerate(z0_b):
z0_f = torch.round(
z0_f * 255).cpu().numpy().astype(np.uint8)
# apply SOD detection
m_f = torch.tensor(self.sod_model.process_data(
z0_f), device=x0.device).to(x0.dtype)
mask = T.Resize(
size=(h, w), interpolation=T.InterpolationMode.NEAREST)(m_f[None])
kernel = torch.ones(5, 5, device=x0.device, dtype=x0.dtype)
mask = dilation(mask[None].to(x0.device), kernel)[0]
M_FG[batch_idx, frame_idx, :, :] = mask
x_t1_1_fg_masked = x_t1_1 * \
(1 - repeat(M_FG[:, 0, :, :],
"b w h -> b c 1 w h", c=x_t1_1.shape[1]))
x_t1_1_fg_masked_moved = []
for batch_idx, x_t1_1_fg_masked_b in enumerate(x_t1_1_fg_masked):
x_t1_fg_masked_b = x_t1_1_fg_masked_b.clone()
x_t1_fg_masked_b = x_t1_fg_masked_b.repeat(
1, video_length-1, 1, 1)
if use_motion_field:
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
x_t1_fg_masked_b = self.warp_latents_independently(
x_t1_fg_masked_b, reference_flow)
else:
x_t1_fg_masked_b = x_t1_fg_masked_b[None]
x_t1_fg_masked_b = torch.cat(
[x_t1_1_fg_masked_b[None], x_t1_fg_masked_b], dim=2)
x_t1_1_fg_masked_moved.append(x_t1_fg_masked_b)
x_t1_1_fg_masked_moved = torch.cat(x_t1_1_fg_masked_moved, dim=0)
M_FG_1 = M_FG[:, :1, :, :]
M_FG_warped = []
for batch_idx, m_fg_1_b in enumerate(M_FG_1):
m_fg_1_b = m_fg_1_b[None, None]
m_fg_b = m_fg_1_b.repeat(1, 1, video_length-1, 1, 1)
if use_motion_field:
m_fg_b = self.warp_latents_independently(
m_fg_b.clone(), reference_flow)
M_FG_warped.append(
torch.cat([m_fg_1_b[:1, 0], m_fg_b[:1, 0]], dim=1))
M_FG_warped = torch.cat(M_FG_warped, dim=0)
channels = x0.shape[1]
M_BG = (1-M_FG) * (1 - M_FG_warped)
M_BG = repeat(M_BG, "b f h w -> b c f h w", c=channels)
a_convex = smooth_bg_strength
x_t1_blending = (1-M_BG) * x_t1 + M_BG * (a_convex *
x_t1 + (1-a_convex) * x_t1_1_fg_masked_moved)
'''
x_t1_blending = self.DDPM_forward(
x0=x_t1_blending, t0=t1, tMax=961, device=device, shape=shape, text_embeddings=text_embeddings, generator=generator)
t1 = 961
'''
latents = x_t1_blending
ddim_res = self.DDIM_backward(num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
null_embs=null_embs, text_embeddings=text_embeddings, latents_local=latents, latents_dtype=dtype, guidance_scale=guidance_scale, guidance_stop_step=guidance_stop_step, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps)
x0 = ddim_res["x0"].detach()
del ddim_res
# Post-processing
video_list = []
for latent in x0:
tmp = latent[None]
print("Frame spit shape", tmp.shape)
frames = []
for fr_split in range(tmp.shape[2]):
print("frame decoding")
frames.append(self.decode_latents(
tmp[:, :, fr_split, None]).detach())
video_list.append(torch.cat(frames, dim=2).cpu().float().numpy())
# Convert to tensor
videos = []
if output_type == "tensor":
for video in video_list:
videos.append(torch.from_numpy(video))
if output_type == 'numpy':
for video in video_list:
videos.append(rearrange(video, 'b c f h w -> (b f) h w c'))
if not return_dict:
return video
return TextToVideoPipelineOutput(videos=videos, code=torch.split(xInit.detach().cpu(), 1, dim=0)) |