akhaliq's picture
akhaliq HF staff
use gradio
51c4a8e verified
raw
history blame
6.18 kB
import gradio as gr
from openai import OpenAI
import time
import re
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
def create_client(api_key, base_url):
return OpenAI(
api_key=api_key,
base_url=base_url
)
def chat_with_ai(message, chat_history, system_prompt):
messages = [
{"role": "system", "content": system_prompt},
]
for human, ai in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": ai})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key, base_url):
client = create_client(api_key, base_url)
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
response = ""
start_time = time.time()
try:
for chunk in client.chat.completions.create(
model=model,
messages=messages,
stream=True
):
content = chunk.choices[0].delta.content or ""
response += content
yield response, time.time() - start_time
except Exception as e:
yield f"Error: {str(e)}", time.time() - start_time
def parse_response(response):
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
return answer, reflection, steps
def process_chat(message, history, model, system_prompt, thinking_budget, api_key, base_url):
if not api_key or not base_url:
history.append((message, "Please provide both API Key and Base URL before starting the chat."))
return history, history
full_response = ""
thinking_time = 0
for response, elapsed_time in respond(message, history, model, system_prompt, thinking_budget, api_key, base_url):
full_response = response
thinking_time = elapsed_time
if full_response.startswith("Error:"):
history.append((message, full_response))
return history, history
answer, reflection, steps = parse_response(full_response)
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n"
for i, step in enumerate(steps, 1):
formatted_response += f"**Step {i}:** {step}\n"
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s"
history.append((message, formatted_response))
return history, history
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(label="API Key", type="password")
base_url = gr.Textbox(label="Base URL", value="https://api.endpoints.anyscale.com/v1")
with gr.Row():
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
thinking_budget = gr.Slider(minimum=1, maximum=100, value=1, step=1, label="Thinking Budget")
system_prompt = gr.Textbox(
label="System Prompt",
value="""
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within <step> and </step> tags.
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
Example format:
<count> [starting budget] </count>
<step> [Content of step 1] </step>
<count> [remaining budget] </count>
<step> [Content of step 2] </step>
<reflection> [Evaluation of the steps so far] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
<count> [remaining budget] </count>
<step> [Content of step 3 or Content of some previous step] </step>
<count> [remaining budget] </count>
...
<step> [Content of final step] </step>
<count> [remaining budget] </count>
<answer> [Final Answer] </answer>
<reflection> [Evaluation of the solution] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
""",
lines=10
)
chatbot_ui = gr.Chatbot()
msg = gr.Textbox(label="Type your message here...")
clear = gr.Button("Clear Chat")
chat_history = gr.State([])
msg.submit(
process_chat, # Use the renamed function
[msg, chat_history, model, system_prompt, thinking_budget, api_key, base_url],
[chatbot_ui, chat_history]
)
clear.click(lambda: ([], []), None, [chatbot_ui, chat_history], queue=False)
demo.launch()