KingNish's picture
Update app.py
11dcd68 verified
raw
history blame
6.36 kB
import gradio as gr
import openai
import time
import re
import os
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
# Sambanova API base URL
API_BASE = "https://api.sambanova.ai/v1"
def create_client(api_key=None):
"""Creates an OpenAI client instance."""
if api_key:
openai.api_key = api_key
else:
openai.api_key = os.getenv("API_KEY")
return openai.OpenAI(api_key=openai.api_key, base_url=API_BASE)
def chat_with_ai(message, chat_history, system_prompt):
"""Formats the chat history for the API call."""
messages = [{"role": "system", "content": system_prompt}]
print(type(chat_history))
for tup in chat_history:
print(type(tup))
first_key = list(tup.keys())[0] # First key
last_key = list(tup.keys())[-1] # Last key
messages.append({"role": "user", "content": tup[first_key]})
messages.append({"role": "assistant", "content": tup[last_key]})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key):
"""Sends the message to the API and gets the response."""
client = create_client(api_key)
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
start_time = time.time()
try:
completion = client.chat.completions.create(model=model, messages=messages)
response = completion.choices[0].message.content
thinking_time = time.time() - start_time
return response, thinking_time
except Exception as e:
error_message = f"Error: {str(e)}"
return error_message, time.time() - start_time
def parse_response(response):
"""Parses the response from the API."""
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
return answer, reflection, steps
def generate(message, history, model, system_prompt, thinking_budget, api_key):
"""Generates the chatbot response."""
response, thinking_time = respond(message, history, model, system_prompt, thinking_budget, api_key)
if response.startswith("Error:"):
return history + [({"role": "system", "content": response},)], ""
answer, reflection, steps = parse_response(response)
messages = []
messages.append({"role": "user", "content": message})
formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)]
all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}"
messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}})
messages.append({"role": "assistant", "content": answer})
return history + messages, ""
# Define the default system prompt
DEFAULT_SYSTEM_PROMPT = """
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant.
Your task is to provide a detailed, step-by-step solution to a given question.
Follow these instructions carefully:
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within <step> and </step> tags.
4. You are allowed to use at most {budget} steps (starting budget),
keep track of it by counting down within tags <count> </count>,
STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed,
based on the self-reflection and reward, decides whether you need to return
to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps
into the final answer within <answer> and </answer> tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning
process within <reflection> and </reflection> tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest
quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
Example format:
<count> [starting budget] </count>
<step> [Content of step 1] </step>
<count> [remaining budget] </count>
<step> [Content of step 2] </step>
<reflection> [Evaluation of the steps so far] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
<count> [remaining budget] </count>
<step> [Content of step 3 or Content of some previous step] </step>
<count> [remaining budget] </count>
...
<step> [Content of final step] </step>
<count> [remaining budget] </count>
<answer> [Final Answer] </answer> (must give final answer in this format)
<reflection> [Evaluation of the solution] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
"""
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SambaNova Cloud API](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability")
with gr.Row():
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
thinking_budget = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Thinking Budget", info="maximum times a model can think")
chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages")
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...")
gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=15, interactive=True)
msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, thinking_budget, api_key], outputs=[chatbot, msg])
demo.launch(share=True, show_api=False)