|
import subprocess |
|
subprocess.run( |
|
'pip install flash-attn --no-build-isolation', |
|
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, |
|
shell=True |
|
) |
|
|
|
import torch |
|
from PIL import Image |
|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria |
|
import os |
|
from threading import Thread |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
MODEL_LIST = "THUDM/LongWriter-glm4-9b" |
|
|
|
|
|
|
|
TITLE = "<h1><center>GLM SPACE</center></h1>" |
|
|
|
PLACEHOLDER = f'<h3><center>LongWriter-glm4-9b is trained based on glm-4-9b, and is capable of generating 10,000+ words at once.</center></h3>' |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
""" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"THUDM/LongWriter-glm4-9b", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b",trust_remote_code=True, use_fast=False) |
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
|
|
stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), |
|
tokenizer.get_command("<|observation|>")] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
@spaces.GPU() |
|
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int): |
|
print(f'message is - {message}') |
|
print(f'history is - {history}') |
|
conversation = [] |
|
for prompt, answer in history: |
|
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) |
|
|
|
|
|
print(f"Conversation is -\n{conversation}") |
|
stop = StopOnTokens() |
|
|
|
input_ids = tokenizer.build_chat_input(message, history=conversation, role='user').input_ids.to(next(model.parameters()).device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), |
|
tokenizer.get_command("<|observation|>")] |
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_k=1, |
|
temperature=temperature, |
|
repetition_penalty=1, |
|
stopping_criteria=StoppingCriteriaList([stop]), |
|
eos_token_id=eos_token_id, |
|
) |
|
|
|
|
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
buffer = "" |
|
for new_token in streamer: |
|
if new_token and '<|user|>' not in new_token: |
|
buffer += new_token |
|
yield buffer |
|
|
|
chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER) |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.HTML(TITLE) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.5, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1024, |
|
maximum=32768, |
|
step=1, |
|
value=4096, |
|
label="Max New Tokens", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], |
|
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], |
|
["Tell me a random fun fact about the Roman Empire."], |
|
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|