File size: 5,381 Bytes
b4deae8
 
 
6c5f89f
 
b4deae8
 
 
 
 
244c875
b4deae8
 
59c9bb2
 
890f55d
59c9bb2
 
 
 
 
 
 
 
 
 
244c875
b4deae8
 
244c875
b4deae8
 
244c875
b4deae8
823d1b2
244c875
b4deae8
 
244c875
b4deae8
 
 
 
 
 
244c875
b4deae8
 
 
 
 
 
59c9bb2
 
 
b4deae8
59c9bb2
 
 
b4deae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e12a54
b4deae8
 
 
 
 
6c5f89f
 
b4deae8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from langchain.chains import RetrievalQA
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import CallbackManager
#from langchain_community.llms import Ollama
#from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
import streamlit as st
import os
import time
from langchain_community.llms import HuggingFaceEndpoint


from langchain_community.embeddings import HuggingFaceEmbeddings

model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

if not os.path.exists('files'):
    os.mkdir('files')

if not os.path.exists('jj'):
    os.mkdir('jj')

if 'template' not in st.session_state:
    st.session_state.template = """You are a knowledgeable chatbot, here to help with questions of the user. Your tone should be professional and informative.Try to give answer in tabular and shortcut.

    Context: {context}
    History: {history}

    User: {question}
    Chatbot:"""
if 'prompt' not in st.session_state:
    st.session_state.prompt = PromptTemplate(
        input_variables=["history", "context", "question"],
        template=st.session_state.template,
    )
if 'memory' not in st.session_state:
    st.session_state.memory = ConversationBufferMemory(
        memory_key="history",
        return_messages=True,
        input_key="question")
if 'vectorstore' not in st.session_state:
    #st.session_state.vectorstore = Chroma(persist_directory='jj', embedding_function=OllamaEmbeddings(base_url='http://localhost:11434',model="mistral")
    st.session_state.vectorstore = Chroma(persist_directory='jj', embedding_function=embeddings) 
    
if 'llm' not in st.session_state:
    #st.session_state.llm = Ollama(base_url="http://localhost:11434",model="mistral",verbose=True,callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),)
    st.session_state.llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.9)
    
# Initialize session state
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []

st.title("PDF Chatbot")

# Upload a PDF file
uploaded_file = st.file_uploader("Upload your PDF", type='pdf')

for message in st.session_state.chat_history:
    with st.chat_message(message["role"]):
        st.markdown(message["message"])

if uploaded_file is not None:
    if not os.path.isfile("files/"+uploaded_file.name+".pdf"):
        with st.status("Analyzing your document..."):
            bytes_data = uploaded_file.read()
            f = open("files/"+uploaded_file.name+".pdf", "wb")
            f.write(bytes_data)
            f.close()
            loader = PyPDFLoader("files/"+uploaded_file.name+".pdf")
            data = loader.load()

            # Initialize text splitter
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=1500,
                chunk_overlap=0,
                length_function=len
            )
            all_splits = text_splitter.split_documents(data)

            # Create and persist the vector store
            #st.session_state.vectorstore = Chroma.from_documents(documents=all_splits,embedding=OllamaEmbeddings(model="mistral"))
            st.session_state.vectorstore = Chroma.from_documents(documents=all_splits,embedding=embeddings)
            st.session_state.vectorstore.persist()

    st.session_state.retriever = st.session_state.vectorstore.as_retriever()
    # Initialize the QA chain
    if 'qa_chain' not in st.session_state:
        st.session_state.qa_chain = RetrievalQA.from_chain_type(
            llm=st.session_state.llm,
            chain_type='stuff',
            retriever=st.session_state.retriever,
            verbose=True,
            chain_type_kwargs={
                "verbose": True,
                "prompt": st.session_state.prompt,
                "memory": st.session_state.memory,
            }
        )

    # Chat input
    if user_input := st.chat_input("You:", key="user_input"):
        user_message = {"role": "user", "message": user_input}
        st.session_state.chat_history.append(user_message)
        with st.chat_message("user"):
            st.markdown(user_input)
        with st.chat_message("assistant"):
            with st.spinner("Assistant is typing..."):
                response = st.session_state.qa_chain(user_input)
            message_placeholder = st.empty()
            full_response = ""
            for chunk in response['result'].split():
                full_response += chunk + " "
                time.sleep(0.05)
                # Add a blinking cursor to simulate typing
                message_placeholder.markdown(full_response + "▌")
            message_placeholder.markdown(full_response)

        chatbot_message = {"role": "assistant", "message": response['result']}
        st.session_state.chat_history.append(chatbot_message)


else:
    st.write("Please upload a PDF file.")