Samuel Mueller
working locally
f50f696
raw
history blame
14 kB
import argparse
import time
import yaml
import torch
from torch import nn
from transformer import TransformerModel
from bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits
from utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
import priors
import encoders
import positional_encodings
class Losses():
gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
mse = nn.MSELoss(reduction='none')
ce = nn.CrossEntropyLoss(reduction='none')
bce = nn.BCEWithLogitsLoss(reduction='none')
get_BarDistribution = BarDistribution
def train(priordataloader_class, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.2,
epochs=10, steps_per_epoch=100, batch_size=200, bptt=10, lr=None, warmup_epochs=10, input_normalization=False,
y_encoder_generator=None, pos_encoder_generator=None, decoder=None, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
aggregate_k_gradients=1, verbose=True
):
device = gpu_device if torch.cuda.is_available() else 'cpu:0'
print(f'Using {device} device')
dl = priordataloader_class(num_steps=steps_per_epoch, batch_size=batch_size, seq_len=bptt, **extra_prior_kwargs_dict)
encoder = encoder_generator(dl.num_features+1 if dl.fuse_x_y else dl.num_features,emsize)
n_out = dl.num_outputs
if isinstance(criterion, nn.GaussianNLLLoss):
n_out *= 2
elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
assert n_out == 1
n_out = criterion.num_bars
model = TransformerModel(encoder, n_out, emsize, nhead, nhid, nlayers, dropout,
y_encoder=y_encoder_generator(1, emsize), input_normalization=input_normalization,
pos_encoder=(pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, bptt*2),
decoder=decoder
)
model.criterion = criterion
if load_weights_from_this_state_dict is not None:
model.load_state_dict(load_weights_from_this_state_dict)
model.to(device)
# learning rate
if lr is None:
lr = get_openai_lr(model)
print(f"Using OpenAI max lr of {lr}.")
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = scheduler(optimizer, warmup_epochs, epochs)
def train():
model.train() # Turn on the train mode
total_loss = 0.
total_positional_losses = 0.
total_positional_losses_recorded = 0
start_time = time.time()
before_get_batch = time.time()
assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
for batch, (data, targets) in enumerate(dl):
time_to_get_batch = time.time() - before_get_batch
before_forward = time.time()
single_eval_pos = single_eval_pos_gen() if callable(single_eval_pos_gen) else single_eval_pos_gen
output = model(tuple(e.to(device) for e in data) if isinstance(data, tuple) else data.to(device)
, single_eval_pos=single_eval_pos)
forward_time = time.time() - before_forward
if single_eval_pos is not None:
targets = targets[single_eval_pos:]
if isinstance(criterion, nn.GaussianNLLLoss):
assert output.shape[-1] == 2, \
'need to write a little bit of code to handle multiple regression targets at once'
mean_pred = output[..., 0]
var_pred = output[..., 1].abs()
losses = criterion(mean_pred.flatten(), targets.to(device).flatten(), var=var_pred.flatten())
elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
losses = criterion(output.flatten(), targets.to(device).flatten())
else:
losses = criterion(output.reshape(-1, n_out), targets.to(device).flatten())
losses = losses.view(*output.shape[0:2]).squeeze(-1)
loss = losses.mean()
loss.backward()
if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
optimizer.zero_grad()
step_time = time.time() - before_forward
total_loss += loss.item()
total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)*loss.cpu().detach()
total_positional_losses_recorded += torch.ones(bptt) if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)
before_get_batch = time.time()
return total_loss / steps_per_epoch, (
total_positional_losses / total_positional_losses_recorded).tolist(), time_to_get_batch, forward_time, step_time
best_val_loss = float("inf")
best_model = None
total_loss = float('inf')
total_positional_losses = float('inf')
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time = train()
if hasattr(dl, 'validate') and epoch % validation_period == 0:
with torch.no_grad():
val_score = dl.validate(model)
else:
val_score = None
if verbose:
print('-' * 89)
print(
f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
f' forward time {forward_time:5.2f}' + (f'val score {val_score}' if val_score is not None else ''))
print('-' * 89)
scheduler.step()
return total_loss, total_positional_losses, model.to('cpu')
def _parse_args(config_parser, parser):
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
if __name__ == '__main__':
config_parser = argparse.ArgumentParser(description='Only used as a first parser for the config file path.')
config_parser.add_argument('--config')
parser = argparse.ArgumentParser()
parser.add_argument('prior')
parser.add_argument('--loss_function', default='barnll')
# Optional Arg's for `--loss_function barnll`
parser.add_argument('--min_y', type=float, help='barnll can only model y in strict ranges, this is the minimum y can take.')
parser.add_argument('--max_y', type=float, help='barnll can only model y in strict ranges, this is the maximum y can take.')
parser.add_argument('--num_buckets', default=100, type=int)
#parser.add_argument('--num_features', default=None, type=int, help='Specify depending on the prior.')
parser.add_argument("--extra_prior_kwargs_dict", default={'fuse_x_y': False}, dest="extra_prior_kwargs_dict", action=StoreDictKeyPair, nargs="+", metavar="KEY=VAL", help='Specify depending on the prior.')
parser.add_argument('--encoder', default='linear', type=str, help='Specify depending on the prior.')
parser.add_argument('--y_encoder', default='linear', type=str, help='Specify depending on the prior. You should specify this if you do not fuse x and y.')
parser.add_argument('--pos_encoder', default='sinus', type=str, help='Specify depending on the prior.')
parser.add_argument('--bptt', default=10, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--warmup_epochs', default=50, type=int)
parser.add_argument('--validation_period', default=10, type=int)
parser.add_argument('--permutation_invariant_max_eval_pos', default=None, type=int, help='Set this to an int to ')
parser.add_argument('--permutation_invariant_sampling', default='weighted', help="Only relevant if --permutation_invariant_max_eval_pos is set.")
# these can likely be mostly left at defaults
parser.add_argument('--emsize', default=512, type=int) # sometimes even larger is better e.g. 1024
parser.add_argument('--nlayers', default=6, type=int)
parser.add_argument('--nhid', default=None, type=int) # 2*emsize is the default
parser.add_argument('--nhead', default=4, type=int) # nhead = emsize / 64 in the original paper
parser.add_argument('--dropout', default=.0, type=float)
parser.add_argument('--steps_per_epoch', default=10, type=int)
parser.add_argument('--batch_size', default=1000, type=int)
parser.add_argument('--lr', '--learning_rate', default=.001, type=float) # try also .0003, .0001, go lower with lower batch size
args, _ = _parse_args(config_parser, parser)
if args.nhid is None:
args.nhid = 2*args.emsize
prior = args.__dict__.pop('prior')
if prior == 'gp':
prior = priors.fast_gp.DataLoader
elif prior == 'ridge':
prior = priors.ridge.DataLoader
elif prior == 'stroke':
prior = priors.stroke.DataLoader
elif prior == 'mix_gp':
prior = priors.fast_gp_mix.DataLoader
else:
raise NotImplementedError(f'Prior == {prior}.')
loss_function = args.__dict__.pop('loss_function')
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
classificiation_criterion = nn.CrossEntropyLoss(reduction='none')
num_buckets = args.__dict__.pop('num_buckets')
max_y = args.__dict__.pop('max_y')
min_y = args.__dict__.pop('min_y')
# criterion = nn.MSELoss(reduction='none')
def get_y_sample():
dl = prior(num_steps=1, batch_size=args.batch_size * args.steps_per_epoch, seq_len=args.bptt,
**args.extra_prior_kwargs_dict)
y_sample = next(iter(dl))[-1]
print(f'Creating Bar distribution with borders from y sample of size {y_sample.numel()}')
return y_sample
if loss_function == 'ce':
criterion = nn.CrossEntropyLoss(reduction='none')
elif loss_function == 'gaussnll':
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
elif loss_function == 'mse':
criterion = nn.MSELoss(reduction='none')
elif loss_function == 'barnll':
criterion = BarDistribution(borders=get_bucket_limits(num_buckets, full_range=(min_y,max_y)))
elif loss_function == 'adaptivebarnll':
borders = get_bucket_limits(num_buckets, ys=get_y_sample(), full_range=(min_y,max_y))
criterion = BarDistribution(borders=borders)
elif loss_function == 'adaptivefullsupportbarnll':
assert min_y is None and max_y is None, "Please do not specify `min_y` and `max_y` with `unboundedadaptivebarnll`."
borders = get_bucket_limits(num_buckets, ys=get_y_sample())
criterion = FullSupportBarDistribution(borders=borders)
else:
raise NotImplementedError(f'loss_function == {loss_function}.')
encoder = args.__dict__.pop('encoder')
y_encoder = args.__dict__.pop('y_encoder')
def get_encoder_generator(encoder):
if encoder == 'linear':
encoder_generator = encoders.Linear
elif encoder == 'mlp':
encoder_generator = encoders.MLP
elif encoder == 'positional':
encoder_generator = encoders.Positional
else:
raise NotImplementedError(f'A {encoder} encoder is not valid.')
return encoder_generator
encoder_generator = get_encoder_generator(encoder)
y_encoder_generator = get_encoder_generator(y_encoder)
pos_encoder = args.__dict__.pop('pos_encoder')
if pos_encoder == 'none':
pos_encoder_generator = None
elif pos_encoder == 'sinus':
pos_encoder_generator = positional_encodings.PositionalEncoding
elif pos_encoder == 'learned':
pos_encoder_generator = positional_encodings.LearnedPositionalEncoding
elif pos_encoder == 'paired_scrambled_learned':
pos_encoder_generator = positional_encodings.PairedScrambledPositionalEncodings
else:
raise NotImplementedError(f'pos_encoer == {pos_encoder} is not valid.')
permutation_invariant_max_eval_pos = args.__dict__.pop('permutation_invariant_max_eval_pos')
permutation_invariant_sampling = args.__dict__.pop('permutation_invariant_sampling')
if permutation_invariant_max_eval_pos is not None:
if permutation_invariant_sampling == 'weighted':
get_sampler = get_weighted_single_eval_pos_sampler
elif permutation_invariant_sampling == 'uniform':
get_sampler = get_uniform_single_eval_pos_sampler
else:
raise ValueError()
args.__dict__['single_eval_pos_gen'] = get_sampler(permutation_invariant_max_eval_pos)
print("ARGS for `train`:", args.__dict__)
train(prior, criterion, encoder_generator,
y_encoder_generator=y_encoder_generator,pos_encoder_generator=pos_encoder_generator,
**args.__dict__)