# app.py import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer def generate_sequences(model_name, prompt): if model_name == "nferruz/ProtGPT2": protgpt2 = pipeline('text-generation', model="nferruz/ProtGPT2") sequences = protgpt2(prompt, max_length=100, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0) return "\n".join([seq['generated_text'] for seq in sequences]) elif model_name == "lightonai/RITA_xl": model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_xl", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_xl") rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer) sequences = rita_gen(prompt, max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2) return "\n".join([seq['generated_text'].replace(' ', '') for seq in sequences]) else: return "Model not supported" model_options = ["nferruz/ProtGPT2", "lightonai/RITA_xl"] gr.Interface( fn=generate_sequences, inputs=[ gr.Dropdown(model_options, label="Select Model"), gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") ], outputs="text", title="Novel Protein Sequence Generation", description="Generate sequences using selected protein language models." ).launch()