File size: 6,029 Bytes
0367344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
@author: MingDong
@file: eval_cfp.py
@desc: this code is very similar with eval_lfw.py and eval_agedb30.py
"""
import os
import argparse
import numpy as np
import scipy.io
import torch.utils.data
import torchvision.transforms as transforms
from torch.nn import DataParallel
from model import mobilefacenet, cbam
from dataloader.cfp import CFP_FP


def getAccuracy(scores, flags, threshold):
    p = np.sum(scores[flags == 1] > threshold)
    n = np.sum(scores[flags == -1] < threshold)
    return 1.0 * (p + n) / len(scores)


def getThreshold(scores, flags, thrNum):
    accuracys = np.zeros((2 * thrNum + 1, 1))
    thresholds = np.arange(-thrNum, thrNum + 1) * 1.0 / thrNum
    for i in range(2 * thrNum + 1):
        accuracys[i] = getAccuracy(scores, flags, thresholds[i])
    max_index = np.squeeze(accuracys == np.max(accuracys))
    bestThreshold = np.mean(thresholds[max_index])
    return bestThreshold

def evaluation_10_fold(feature_path='./result/cur_epoch_cfp_result.mat'):
    ACCs = np.zeros(10)
    result = scipy.io.loadmat(feature_path)
    for i in range(10):
        fold = result['fold']
        flags = result['flag']
        featureLs = result['fl']
        featureRs = result['fr']

        valFold = fold != i
        testFold = fold == i
        flags = np.squeeze(flags)

        mu = np.mean(np.concatenate((featureLs[valFold[0], :], featureRs[valFold[0], :]), 0), 0)
        mu = np.expand_dims(mu, 0)
        featureLs = featureLs - mu
        featureRs = featureRs - mu
        featureLs = featureLs / np.expand_dims(np.sqrt(np.sum(np.power(featureLs, 2), 1)), 1)
        featureRs = featureRs / np.expand_dims(np.sqrt(np.sum(np.power(featureRs, 2), 1)), 1)

        scores = np.sum(np.multiply(featureLs, featureRs), 1)
        threshold = getThreshold(scores[valFold[0]], flags[valFold[0]], 10000)
        ACCs[i] = getAccuracy(scores[testFold[0]], flags[testFold[0]], threshold)

    return ACCs

def loadModel(data_root, file_list, backbone_net, gpus='0', resume=None):

    if backbone_net == 'MobileFace':
        net = mobilefacenet.MobileFaceNet()
    elif backbone_net == 'CBAM_50':
        net = cbam.CBAMResNet(50, feature_dim=args.feature_dim, mode='ir')
    elif backbone_net == 'CBAM_50_SE':
        net = cbam.CBAMResNet(50, feature_dim=args.feature_dim, mode='ir_se')
    elif backbone_net == 'CBAM_100':
        net = cbam.CBAMResNet(100, feature_dim=args.feature_dim, mode='ir')
    elif backbone_net == 'CBAM_100_SE':
        net = cbam.CBAMResNet(100, feature_dim=args.feature_dim, mode='ir_se')
    else:
        print(backbone_net, ' is not available!')

    # gpu init
    multi_gpus = False
    if len(gpus.split(',')) > 1:
        multi_gpus = True
    os.environ['CUDA_VISIBLE_DEVICES'] = gpus
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    net.load_state_dict(torch.load(resume)['net_state_dict'])

    if multi_gpus:
        net = DataParallel(net).to(device)
    else:
        net = net.to(device)

    transform = transforms.Compose([
        transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))  # range [0.0, 1.0] -> [-1.0,1.0]
    ])
    cfp_dataset = CFP_FP(data_root, file_list, transform=transform)
    cfp_loader = torch.utils.data.DataLoader(cfp_dataset, batch_size=128,
                                             shuffle=False, num_workers=4, drop_last=False)

    return net.eval(), device, cfp_dataset, cfp_loader

def getFeatureFromTorch(feature_save_dir, net, device, data_set, data_loader):
    featureLs = None
    featureRs = None
    count = 0
    for data in data_loader:
        for _, i in enumerate(data):
            data[i] = data[i].to(device)
        count += data[0].size(0)
        #print('extracing deep features from the face pair {}...'.format(count))
        with torch.no_grad():
            res = [net(d).data.cpu().numpy() for d in data]
        featureL = np.concatenate((res[0], res[1]), 1)
        featureR = np.concatenate((res[2], res[3]), 1)
        # print(featureL.shape, featureR.shape)
        if featureLs is None:
            featureLs = featureL
        else:
            featureLs = np.concatenate((featureLs, featureL), 0)
        if featureRs is None:
            featureRs = featureR
        else:
            featureRs = np.concatenate((featureRs, featureR), 0)
        # print(featureLs.shape, featureRs.shape)

    result = {'fl': featureLs, 'fr': featureRs, 'fold': data_set.folds, 'flag': data_set.flags}
    scipy.io.savemat(feature_save_dir, result)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Testing')
    parser.add_argument('--root', type=str, default='/media/sda/CFP-FP/cfp_fp_aligned_112', help='The path of lfw data')
    parser.add_argument('--file_list', type=str, default='/media/sda/CFP-FP/cfp_fp_pair.txt', help='The path of lfw data')
    parser.add_argument('--resume', type=str, default='./checkpoints/SERES100_SERES100_IR_20190528_132635/Iter_342000_net.ckpt', help='The path pf save checkpoints')
    parser.add_argument('--backbone_net', type=str, default='CBAM_100_SE', help='MobileFace, CBAM_50, CBAM_50_SE, CBAM_100, CBAM_100_SE')
    parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension')
    parser.add_argument('--feature_save_path', type=str, default='./result/cur_epoch_cfp_result.mat',
                        help='The path of the extract features save, must be .mat file')
    parser.add_argument('--gpus', type=str, default='2,3', help='gpu list')
    args = parser.parse_args()

    net, device, agedb_dataset, agedb_loader = loadModel(args.root, args.file_list, args.backbone_net, args.gpus, args.resume)
    getFeatureFromTorch(args.feature_save_path, net, device, agedb_dataset, agedb_loader)
    ACCs = evaluation_10_fold(args.feature_save_path)
    for _, i in enumerate(ACCs):
        print(f'{i + 1}    {ACCs[i] * 100:.2f}')
    print('--------')
    print(f'AVE    {np.mean(ACCs) * 100:.4f}')