File size: 13,209 Bytes
0367344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
#!/usr/bin/env python
# encoding: utf-8
"""
@author: MingDong
@file: train.py
@desc: train script for deep face recognition
"""
import os
import argparse
import time
from datetime import datetime
import numpy as np
import torch.utils.data
import torch.optim as optim
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from torch.nn import DataParallel
from model.mobilefacenet import MobileFaceNet
from model.resnet import ResNet50
from model.cbam import CBAMResNet
from model.attention import ResidualAttentionNet_56, ResidualAttentionNet_92
from margin.ArcMarginProduct import ArcMarginProduct
from margin.MultiMarginProduct import MultiMarginProduct
from margin.CosineMarginProduct import CosineMarginProduct
from margin.SphereMarginProduct import SphereMarginProduct
from margin.InnerProduct import InnerProduct
from utils.visualize import Visualizer
from utils.logging import init_log
from dataloader.casia_webface import CASIAWebFace
from dataloader.lfw import LFW
from dataloader.agedb import AgeDB30
from dataloader.cfp import CFP_FP
from eval_lfw import evaluation_10_fold, getFeatureFromTorch
def train(args):
# gpu init
multi_gpus = False
if len(args.gpus.split(',')) > 1:
multi_gpus = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# log init
save_dir = os.path.join(args.save_dir, args.model_pre + args.backbone.upper() + '_' + datetime.now().strftime('%Y%m%d_%H%M%S'))
if os.path.exists(save_dir):
raise NameError('model dir exists!')
os.makedirs(save_dir)
logging = init_log(save_dir)
_print = logging.info
# dataloader loader
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
# validation dataloader
trainset = CASIAWebFace(args.train_root, args.train_file_list, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=4, drop_last=False)
# test dataloader
lfwdataset = LFW(args.lfw_test_root, args.lfw_file_list, transform=transform)
lfwloader = torch.utils.data.DataLoader(lfwdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
agedbdataset = AgeDB30(args.agedb_test_root, args.agedb_file_list, transform=transform)
agedbloader = torch.utils.data.DataLoader(agedbdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
cfpfpdataset = CFP_FP(args.cfpfp_test_root, args.cfpfp_file_list, transform=transform)
cfpfploader = torch.utils.data.DataLoader(cfpfpdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
# define backbone and margin layer
if args.backbone == 'MobileFace':
net = MobileFaceNet(feature_dim=args.feature_dim)
elif args.backbone == 'Res50':
net = ResNet50()
elif args.backbone == 'Res50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Res100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Attention_56':
net = ResidualAttentionNet_56(feature_dim=args.feature_dim)
elif args.backbone == 'Attention_92':
net = ResidualAttentionNet_92(feature_dim=args.feature_dim)
else:
print(args.backbone, ' is not available!')
if args.margin_type == 'ArcFace':
margin = ArcMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'MultiMargin':
margin = MultiMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'CosFace':
margin = CosineMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'Softmax':
margin = InnerProduct(args.feature_dim, trainset.class_nums)
elif args.margin_type == 'SphereFace':
margin = SphereMarginProduct(args.feature_dim, trainset.class_nums)
else:
print(args.margin_type, 'is not available!')
if args.resume:
print('resume the model parameters from: ', args.net_path, args.margin_path)
net.load_state_dict(torch.load(args.net_path)['net_state_dict'])
margin.load_state_dict(torch.load(args.margin_path)['net_state_dict'])
# define optimizers for different layer
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer_ft = optim.SGD([
{'params': net.parameters(), 'weight_decay': 5e-4},
{'params': margin.parameters(), 'weight_decay': 5e-4}
], lr=0.1, momentum=0.9, nesterov=True)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[6, 11, 16], gamma=0.1)
if multi_gpus:
net = DataParallel(net).to(device)
margin = DataParallel(margin).to(device)
else:
net = net.to(device)
margin = margin.to(device)
best_lfw_acc = 0.0
best_lfw_iters = 0
best_agedb30_acc = 0.0
best_agedb30_iters = 0
best_cfp_fp_acc = 0.0
best_cfp_fp_iters = 0
total_iters = 0
vis = Visualizer(env=args.model_pre + args.backbone)
for epoch in range(1, args.total_epoch + 1):
# train model
_print(f"Train Epoch: {epoch}/{args.total_epoch} ...")
net.train()
since = time.time()
for data in trainloader:
img, label = data[0].to(device), data[1].to(device)
optimizer_ft.zero_grad()
raw_logits = net(img)
output = margin(raw_logits, label)
total_loss = criterion(output, label)
total_loss.backward()
optimizer_ft.step()
total_iters += 1
# print train information
if total_iters % 100 == 0:
# current training accuracy
_, predict = torch.max(output.data, 1)
total = label.size(0)
correct = (np.array(predict.cpu()) == np.array(label.data.cpu())).sum()
time_cur = (time.time() - since) / 100
since = time.time()
vis.plot_curves({'softmax loss': total_loss.item()}, iters=total_iters, title='train loss',
xlabel='iters', ylabel='train loss')
vis.plot_curves({'train accuracy': correct / total}, iters=total_iters, title='train accuracy', xlabel='iters',
ylabel='train accuracy')
_print(f"Iters: {total_iters:0>6d}/[{epoch:0>2d}], loss: {total_loss.item():.4f}, train_accuracy: "
f"{correct/total:.4f}, time: {time_cur:.2f} s/iter, learning rate: {exp_lr_scheduler.get_lr()[0]}")
# save model
if total_iters % args.save_freq == 0:
msg = f'Saving checkpoint: {total_iters}'
_print(msg)
if multi_gpus:
net_state_dict = net.module.state_dict()
margin_state_dict = margin.module.state_dict()
else:
net_state_dict = net.state_dict()
margin_state_dict = margin.state_dict()
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save({
'iters': total_iters,
'net_state_dict': net_state_dict},
os.path.join(save_dir, f'Iter_{total_iters:06}_net.ckpt'))
torch.save({
'iters': total_iters,
'net_state_dict': margin_state_dict},
os.path.join(save_dir, f'Iter_{total_iters:06}_margin.ckpt'))
# test accuracy
if total_iters % args.test_freq == 0:
# test model on lfw
net.eval()
getFeatureFromTorch('result/cur_lfw_result.mat', net, device, lfwdataset, lfwloader)
lfw_accs = evaluation_10_fold('result/cur_lfw_result.mat')
_print(f'LFW Ave Accuracy: {np.mean(lfw_accs) * 100:.4f}')
if best_lfw_acc <= np.mean(lfw_accs) * 100:
best_lfw_acc = np.mean(lfw_accs) * 100
best_lfw_iters = total_iters
# test model on AgeDB30
getFeatureFromTorch('result/cur_agedb30_result.mat', net, device, agedbdataset, agedbloader)
age_accs = evaluation_10_fold('result/cur_agedb30_result.mat')
_print(f'AgeDB-30 Ave Accuracy: {np.mean(age_accs) * 100:.4f}')
if best_agedb30_acc <= np.mean(age_accs) * 100:
best_agedb30_acc = np.mean(age_accs) * 100
best_agedb30_iters = total_iters
# test model on CFP-FP
getFeatureFromTorch('result/cur_cfpfp_result.mat', net, device, cfpfpdataset, cfpfploader)
cfp_accs = evaluation_10_fold('result/cur_cfpfp_result.mat')
_print(f'CFP-FP Ave Accuracy: {np.mean(cfp_accs) * 100:.4f}')
if best_cfp_fp_acc <= np.mean(cfp_accs) * 100:
best_cfp_fp_acc = np.mean(cfp_accs) * 100
best_cfp_fp_iters = total_iters
_print(f'Current Best Accuracy: LFW: {best_lfw_acc:.4f} in iters: {best_lfw_iters}, AgeDB-30: {best_agedb30_acc:.4f} in iters: '
f'{best_agedb30_iters} and CFP-FP: {best_cfp_fp_acc:.4f} in iters: {best_cfp_fp_iters}')
vis.plot_curves({'lfw': np.mean(lfw_accs), 'agedb-30': np.mean(age_accs), 'cfp-fp': np.mean(cfp_accs)}, iters=total_iters,
title='test accuracy', xlabel='iters', ylabel='test accuracy')
net.train()
exp_lr_scheduler.step()
_print(f'Finally Best Accuracy: LFW: {best_lfw_acc:.4f} in iters: {best_lfw_iters}, '
f'AgeDB-30: {best_agedb30_acc:.4f} in iters: {best_agedb30_iters} and CFP-FP: {best_cfp_fp_acc:.4f} in iters: {best_cfp_fp_iters}')
print('finishing training')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch for deep face recognition')
parser.add_argument('--train_root', type=str, default='/datasets/public2/upload/faces_emore_images', help='train image root')
parser.add_argument('--train_file_list', type=str, default='/datasets/public2/upload/faces_emore/faces_emore.list', help='train list')
parser.add_argument('--lfw_test_root', type=str, default='/datasets/public1/upload/datasets/lfw', help='lfw image root')
parser.add_argument('--lfw_file_list', type=str, default='/datasets/public1/upload/datasets/lfw_pair.txt', help='lfw pair file list')
parser.add_argument('--agedb_test_root', type=str, default='/datasets/public1/upload/datasets/agedb_30', help='agedb image root')
parser.add_argument('--agedb_file_list', type=str, default='/datasets/public1/upload/datasets/agedb_30_pair.txt', help='agedb pair file list')
parser.add_argument('--cfpfp_test_root', type=str, default='/datasets/public1/upload/datasets/cfp_fp', help='agedb image root')
parser.add_argument('--cfpfp_file_list', type=str, default='/datasets/public1/upload/datasets/cfp_fp_pair.txt', help='agedb pair file list')
parser.add_argument('--backbone', type=str, default='Res50', help='MobileFace, Res50_IR, SERes50_IR, Res100_IR, SERes100_IR, Attention_56, Attention_92')
parser.add_argument('--margin_type', type=str, default='ArcFace', help='ArcFace, CosFace, SphereFace, MultiMargin, Softmax')
parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension, 128 or 512')
parser.add_argument('--scale_size', type=float, default=32.0, help='scale size')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--total_epoch', type=int, default=18, help='total epochs')
parser.add_argument('--save_freq', type=int, default=10000, help='save frequency')
parser.add_argument('--test_freq', type=int, default=10000, help='test frequency')
parser.add_argument('--resume', type=int, default=True, help='resume model')
parser.add_argument('--net_path', type=str, default='./checkpoints/resnet50_Iter_486000_net.ckpt', help='resume model')
parser.add_argument('--margin_path', type=str, default='./checkpoints/resnet50_Iter_48600_margin.ckpt', help='resume model')
parser.add_argument('--save_dir', type=str, default='./checkpoints', help='model save dir')
parser.add_argument('--model_pre', type=str, default='Res50_', help='model prefix')
parser.add_argument('--gpus', type=str, default='0', help='model prefix')
args = parser.parse_args()
train(args)
|