FaceRecognition-LivenessDetection-SDK
/
face_recognition1
/face_feature
/margin
/CosineMarginProduct.py
#!/usr/bin/env python | |
# encoding: utf-8 | |
''' | |
@author: MingDong | |
@file: CosineMarginProduct.py | |
@desc: additive cosine margin for cosface | |
''' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Parameter | |
class CosineMarginProduct(nn.Module): | |
def __init__(self, in_feature=128, out_feature=10575, s=30.0, m=0.35): | |
super(CosineMarginProduct, self).__init__() | |
self.in_feature = in_feature | |
self.out_feature = out_feature | |
self.s = s | |
self.m = m | |
self.weight = Parameter(torch.Tensor(out_feature, in_feature)) | |
nn.init.xavier_uniform_(self.weight) | |
def forward(self, x, label): | |
cosine = F.linear(F.normalize(x), F.normalize(self.weight)) | |
# one_hot = torch.zeros(cosine.size(), device='cuda' if torch.cuda.is_available() else 'cpu') | |
one_hot = torch.zeros_like(cosine) | |
one_hot.scatter_(1, label.view(-1, 1), 1.0) | |
output = self.s * (cosine - one_hot * self.m) | |
return output | |
if __name__ == '__main__': | |
pass | |