|
|
|
|
|
''' |
|
@author: MingDong |
|
@file: resnet.py |
|
@desc: Original ResNet model, including ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152, we removed the last global average pooling layer |
|
and replaced it with a fully connected layer with dimension of 512. BN is used for fast convergence. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
|
|
def ResNet18(): |
|
model = ResNet(BasicBlock, [2, 2, 2, 2]) |
|
return model |
|
|
|
def ResNet34(): |
|
model = ResNet(BasicBlock, [3, 4, 6, 3]) |
|
return model |
|
|
|
def ResNet50(): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3]) |
|
return model |
|
|
|
def ResNet101(): |
|
model = ResNet(Bottleneck, [3, 4, 23, 3]) |
|
return model |
|
|
|
def ResNet152(): |
|
model = ResNet(Bottleneck, [3, 8, 36, 3]) |
|
return model |
|
|
|
__all__ = ['ResNet', 'ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet152'] |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.skip_add = nn.quantized.FloatFunctional() |
|
|
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
|
|
|
|
|
|
out = self.skip_add.add(identity, out) |
|
out = self.relu2(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.skip_add = nn.quantized.FloatFunctional() |
|
self.relu3 = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu1(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu2(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
|
|
|
|
out = self.skip_add.add(identity, out) |
|
out = self.relu3(out) |
|
|
|
return out |
|
|
|
|
|
class Flatten(nn.Module): |
|
def forward(self, x): |
|
|
|
x = x.reshape(x.size(0), -1) |
|
return torch.unsqueeze(torch.unsqueeze(x, 2), 3) |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, feature_dim=512, drop_ratio=0.4, zero_init_residual=False): |
|
super(ResNet, self).__init__() |
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
self.output_layer = nn.Sequential(nn.BatchNorm2d(512 * block.expansion), |
|
nn.Dropout(drop_ratio), |
|
Flatten(), |
|
nn.Conv2d(512 * block.expansion * 7 * 7, feature_dim, 1), |
|
nn.BatchNorm2d(feature_dim), |
|
nn.Flatten()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.output_layer(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
if __name__ == "__main__": |
|
x = torch.Tensor(2, 3, 112, 112) |
|
net = ResNet50() |
|
print(net) |
|
|
|
x = net(x) |
|
print(x.shape) |
|
|