faceplugin's picture
Update model
0367344
raw
history blame
7.58 kB
#!/usr/bin/env python
# encoding: utf-8
'''
@author: MingDong
@file: resnet.py
@desc: Original ResNet model, including ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152, we removed the last global average pooling layer
and replaced it with a fully connected layer with dimension of 512. BN is used for fast convergence.
'''
import torch
import torch.nn as nn
def ResNet18():
model = ResNet(BasicBlock, [2, 2, 2, 2])
return model
def ResNet34():
model = ResNet(BasicBlock, [3, 4, 6, 3])
return model
def ResNet50():
model = ResNet(Bottleneck, [3, 4, 6, 3])
return model
def ResNet101():
model = ResNet(Bottleneck, [3, 4, 23, 3])
return model
def ResNet152():
model = ResNet(Bottleneck, [3, 8, 36, 3])
return model
__all__ = ['ResNet', 'ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet152']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.skip_add = nn.quantized.FloatFunctional()
# Remember to use two independent ReLU for layer fusion.
self.relu2 = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
# Use FloatFunctional for addition for quantization compatibility
# out += identity
# out = torch.add(identity, out)
out = self.skip_add.add(identity, out)
out = self.relu2(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.downsample = downsample
self.stride = stride
self.skip_add = nn.quantized.FloatFunctional()
self.relu3 = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
# out += identity
# out = torch.add(identity, out)
out = self.skip_add.add(identity, out)
out = self.relu3(out)
return out
class Flatten(nn.Module):
def forward(self, x):
# return input.view(input.size(0), -1)
x = x.reshape(x.size(0), -1)
return torch.unsqueeze(torch.unsqueeze(x, 2), 3)
class ResNet(nn.Module):
def __init__(self, block, layers, feature_dim=512, drop_ratio=0.4, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.output_layer = nn.Sequential(nn.BatchNorm2d(512 * block.expansion),
nn.Dropout(drop_ratio),
Flatten(),
nn.Conv2d(512 * block.expansion * 7 * 7, feature_dim, 1),
nn.BatchNorm2d(feature_dim),
nn.Flatten())
# self.output_bn2d = nn.BatchNorm2d(512 * block.expansion)
# self.output_drop = nn.Dropout(drop_ratio)
# self.output_linear = nn.Linear(512 * block.expansion * 7 * 7, feature_dim)
# self.output_bn1d = nn.BatchNorm1d(feature_dim)
#
# self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# self.fc = nn.Linear(512 * block.expansion, feature_dim)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the checkpoints by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.output_layer(x)
# x = self.output_bn2d(x)
# x = self.output_drop(x)
# x = torch.flatten(x, 1)
# x = self.output_linear(x)
# x = self.output_bn1d(x)
return x
if __name__ == "__main__":
x = torch.Tensor(2, 3, 112, 112)
net = ResNet50()
print(net)
x = net(x)
print(x.shape)