|
""" |
|
@author: MingDong |
|
@file: spherenet.py |
|
@desc: A 64 layer residual checkpoints struture used in sphereface and cosface, for fast convergence, I add BN after every Conv layer. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, channels): |
|
super(Block, self).__init__() |
|
self.conv1 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(channels) |
|
self.prelu1 = nn.PReLU(channels) |
|
self.conv2 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(channels) |
|
self.prelu2 = nn.PReLU(channels) |
|
|
|
def forward(self, x): |
|
short_cut = x |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.prelu1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.prelu2(x) |
|
|
|
return x + short_cut |
|
|
|
|
|
class SphereNet(nn.Module): |
|
def __init__(self, num_layers = 20, feature_dim=512): |
|
super(SphereNet, self).__init__() |
|
assert num_layers in [20, 64], 'SphereNet num_layers should be 20 or 64' |
|
if num_layers == 20: |
|
layers = [1, 2, 4, 1] |
|
elif num_layers == 64: |
|
layers = [3, 7, 16, 3] |
|
else: |
|
raise ValueError('sphere' + str(num_layers) + " IS NOT SUPPORTED! (sphere20 or sphere64)") |
|
|
|
filter_list = [3, 64, 128, 256, 512] |
|
block = Block |
|
self.layer1 = self._make_layer(block, filter_list[0], filter_list[1], layers[0], stride=2) |
|
self.layer2 = self._make_layer(block, filter_list[1], filter_list[2], layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, filter_list[2], filter_list[3], layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, filter_list[3], filter_list[4], layers[3], stride=2) |
|
self.fc = nn.Linear(512 * 7 * 7, feature_dim) |
|
self.last_bn = nn.BatchNorm1d(feature_dim) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): |
|
if m.bias is not None: |
|
nn.init.xavier_uniform_(m.weight) |
|
nn.init.constant_(m.bias, 0) |
|
else: |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
|
|
def _make_layer(self, block, inplanes, planes, num_units, stride): |
|
layers = [] |
|
layers.append(nn.Conv2d(inplanes, planes, 3, stride, 1)) |
|
layers.append(nn.BatchNorm2d(planes)) |
|
layers.append(nn.PReLU(planes)) |
|
for _ in range(num_units): |
|
layers.append(block(planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = x.view(x.size(0), -1) |
|
x = self.fc(x) |
|
x = self.last_bn(x) |
|
|
|
return x |
|
|
|
|
|
if __name__ == '__main__': |
|
x = torch.Tensor(2, 3, 112, 112) |
|
net = SphereNet(num_layers=64, feature_dim=512) |
|
|
|
out = net(x) |
|
print(out.shape) |
|
|