faceplugin's picture
Update model
0367344
raw
history blame
2.96 kB
"""
@author: MingDong
@file: spherenet.py
@desc: A 64 layer residual checkpoints struture used in sphereface and cosface, for fast convergence, I add BN after every Conv layer.
"""
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self, channels):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
self.prelu1 = nn.PReLU(channels)
self.conv2 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
self.prelu2 = nn.PReLU(channels)
def forward(self, x):
short_cut = x
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.prelu2(x)
return x + short_cut
class SphereNet(nn.Module):
def __init__(self, num_layers = 20, feature_dim=512):
super(SphereNet, self).__init__()
assert num_layers in [20, 64], 'SphereNet num_layers should be 20 or 64'
if num_layers == 20:
layers = [1, 2, 4, 1]
elif num_layers == 64:
layers = [3, 7, 16, 3]
else:
raise ValueError('sphere' + str(num_layers) + " IS NOT SUPPORTED! (sphere20 or sphere64)")
filter_list = [3, 64, 128, 256, 512]
block = Block
self.layer1 = self._make_layer(block, filter_list[0], filter_list[1], layers[0], stride=2)
self.layer2 = self._make_layer(block, filter_list[1], filter_list[2], layers[1], stride=2)
self.layer3 = self._make_layer(block, filter_list[2], filter_list[3], layers[2], stride=2)
self.layer4 = self._make_layer(block, filter_list[3], filter_list[4], layers[3], stride=2)
self.fc = nn.Linear(512 * 7 * 7, feature_dim)
self.last_bn = nn.BatchNorm1d(feature_dim)
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
if m.bias is not None:
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
else:
nn.init.normal_(m.weight, 0, 0.01)
def _make_layer(self, block, inplanes, planes, num_units, stride):
layers = []
layers.append(nn.Conv2d(inplanes, planes, 3, stride, 1))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.PReLU(planes))
for _ in range(num_units):
layers.append(block(planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.last_bn(x)
return x
if __name__ == '__main__':
x = torch.Tensor(2, 3, 112, 112)
net = SphereNet(num_layers=64, feature_dim=512)
out = net(x)
print(out.shape)