import torch import torch.nn as nn import torch.nn.functional as F class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True): super(BasicConv, self).__init__() self.out_channels = out_planes if bn: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) self.relu = nn.ReLU(inplace=True) if relu else None else: self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True) self.bn = None self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class BasicRFB(nn.Module): def __init__(self, in_planes, out_planes, stride=1, scale=0.1, map_reduce=8, vision=1, groups=1): super(BasicRFB, self).__init__() self.scale = scale self.out_channels = out_planes inter_planes = in_planes // map_reduce self.branch0 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 1, dilation=vision + 1, relu=False, groups=groups) ) self.branch1 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, 2 * inter_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 2, dilation=vision + 2, relu=False, groups=groups) ) self.branch2 = nn.Sequential( BasicConv(in_planes, inter_planes, kernel_size=1, stride=1, groups=groups, relu=False), BasicConv(inter_planes, (inter_planes // 2) * 3, kernel_size=3, stride=1, padding=1, groups=groups), BasicConv((inter_planes // 2) * 3, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups), BasicConv(2 * inter_planes, 2 * inter_planes, kernel_size=3, stride=1, padding=vision + 4, dilation=vision + 4, relu=False, groups=groups) ) self.ConvLinear = BasicConv(6 * inter_planes, out_planes, kernel_size=1, stride=1, relu=False) self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) out = torch.cat((x0, x1, x2), 1) out = self.ConvLinear(out) short = self.shortcut(x) out = out * self.scale + short out = self.relu(out) return out class Mb_Tiny_RFB(nn.Module): def __init__(self, num_classes=2): super(Mb_Tiny_RFB, self).__init__() self.base_channel = 8 * 2 def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_dw(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU(inplace=True), nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True), ) self.model = nn.Sequential( conv_bn(3, self.base_channel, 2), # 160*120 conv_dw(self.base_channel, self.base_channel * 2, 1), conv_dw(self.base_channel * 2, self.base_channel * 2, 2), # 80*60 conv_dw(self.base_channel * 2, self.base_channel * 2, 1), conv_dw(self.base_channel * 2, self.base_channel * 4, 2), # 40*30 conv_dw(self.base_channel * 4, self.base_channel * 4, 1), conv_dw(self.base_channel * 4, self.base_channel * 4, 1), BasicRFB(self.base_channel * 4, self.base_channel * 4, stride=1, scale=1.0), conv_dw(self.base_channel * 4, self.base_channel * 8, 2), # 20*15 conv_dw(self.base_channel * 8, self.base_channel * 8, 1), conv_dw(self.base_channel * 8, self.base_channel * 8, 1), conv_dw(self.base_channel * 8, self.base_channel * 16, 2), # 10*8 conv_dw(self.base_channel * 16, self.base_channel * 16, 1) ) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.model(x) x = F.avg_pool2d(x, 7) x = x.view(-1, 1024) x = self.fc(x) return x