#!/usr/bin/env python # encoding: utf-8 ''' @author: MingDong @file: arcfacenet.py @desc: Network structures used in the arcface paper, including ResNet50-IR, ResNet101-IR, SEResNet50-IR, SEResNet101-IR '''''' Update: This file has been deprecated, all the models build in this class have been rebuild in cbam.py Yet the code in this file still works. ''' from collections import namedtuple import torch from torch import nn class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class SEModule(nn.Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): input_img = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return input_img * x class BottleNeck_IR(nn.Module): def __init__(self, in_channel, out_channel, stride): super(BottleNeck_IR, self).__init__() if in_channel == out_channel: self.shortcut_layer = nn.MaxPool2d(1, stride) else: self.shortcut_layer = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=(1, 1), stride=stride, bias=False), nn.BatchNorm2d(out_channel) ) self.res_layer = nn.Sequential(nn.BatchNorm2d(in_channel), nn.Conv2d(in_channel, out_channel, (3, 3), 1, 1, bias=False), nn.BatchNorm2d(out_channel), nn.PReLU(out_channel), nn.Conv2d(out_channel, out_channel, (3, 3), stride, 1, bias=False), nn.BatchNorm2d(out_channel)) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return shortcut + res class BottleNeck_IR_SE(nn.Module): def __init__(self, in_channel, out_channel, stride): super(BottleNeck_IR_SE, self).__init__() if in_channel == out_channel: self.shortcut_layer = nn.MaxPool2d(1, stride) else: self.shortcut_layer = nn.Sequential( nn.Conv2d(in_channel, out_channel, kernel_size=(1, 1), stride=stride, bias=False), nn.BatchNorm2d(out_channel) ) self.res_layer = nn.Sequential(nn.BatchNorm2d(in_channel), nn.Conv2d(in_channel, out_channel, (3, 3), 1, 1, bias=False), nn.BatchNorm2d(out_channel), nn.PReLU(out_channel), nn.Conv2d(out_channel, out_channel, (3, 3), stride, 1, bias=False), nn.BatchNorm2d(out_channel), SEModule(out_channel, 16)) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return shortcut + res class Bottleneck(namedtuple('Block', ['in_channel', 'out_channel', 'stride'])): '''A named tuple describing a ResNet block.''' def get_block(in_channel, out_channel, num_units, stride=2): return [Bottleneck(in_channel, out_channel, stride)] + [Bottleneck(out_channel, out_channel, 1) for i in range(num_units - 1)] def get_blocks(num_layers): if num_layers == 50: blocks = [ get_block(in_channel=64, out_channel=64, num_units=3), get_block(in_channel=64, out_channel=128, num_units=4), get_block(in_channel=128, out_channel=256, num_units=14), get_block(in_channel=256, out_channel=512, num_units=3) ] elif num_layers == 100: blocks = [ get_block(in_channel=64, out_channel=64, num_units=3), get_block(in_channel=64, out_channel=128, num_units=13), get_block(in_channel=128, out_channel=256, num_units=30), get_block(in_channel=256, out_channel=512, num_units=3) ] elif num_layers == 152: blocks = [ get_block(in_channel=64, out_channel=64, num_units=3), get_block(in_channel=64, out_channel=128, num_units=8), get_block(in_channel=128, out_channel=256, num_units=36), get_block(in_channel=256, out_channel=512, num_units=3) ] return blocks class SEResNet_IR(nn.Module): def __init__(self, num_layers, feature_dim=512, drop_ratio=0.4, mode = 'ir'): super(SEResNet_IR, self).__init__() assert num_layers in [50, 100, 152], 'num_layers should be 50, 100 or 152' assert mode in ['ir', 'se_ir'], 'mode should be ir or se_ir' blocks = get_blocks(num_layers) if mode == 'ir': unit_module = BottleNeck_IR elif mode == 'se_ir': unit_module = BottleNeck_IR_SE self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False), nn.BatchNorm2d(64), nn.PReLU(64)) self.output_layer = nn.Sequential(nn.BatchNorm2d(512), nn.Dropout(drop_ratio), Flatten(), nn.Linear(512 * 7 * 7, feature_dim), nn.BatchNorm1d(feature_dim)) modules = [] for block in blocks: for bottleneck in block: modules.append( unit_module(bottleneck.in_channel, bottleneck.out_channel, bottleneck.stride)) self.body = nn.Sequential(*modules) def forward(self, x): x = self.input_layer(x) x = self.body(x) x = self.output_layer(x) return x if __name__ == '__main__': x = torch.Tensor(2, 3, 112, 112) net = SEResNet_IR(100, mode='se_ir') print(net) x = net(x) print(x.shape)