""" @author: MingDong @file: spherenet.py @desc: A 64 layer residual checkpoints struture used in sphereface and cosface, for fast convergence, I add BN after every Conv layer. """ import torch import torch.nn as nn class Block(nn.Module): def __init__(self, channels): super(Block, self).__init__() self.conv1 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False) self.bn1 = nn.BatchNorm2d(channels) self.prelu1 = nn.PReLU(channels) self.conv2 = nn.Conv2d(channels, channels, 3, 1, 1, bias=False) self.bn2 = nn.BatchNorm2d(channels) self.prelu2 = nn.PReLU(channels) def forward(self, x): short_cut = x x = self.conv1(x) x = self.bn1(x) x = self.prelu1(x) x = self.conv2(x) x = self.bn2(x) x = self.prelu2(x) return x + short_cut class SphereNet(nn.Module): def __init__(self, num_layers = 20, feature_dim=512): super(SphereNet, self).__init__() assert num_layers in [20, 64], 'SphereNet num_layers should be 20 or 64' if num_layers == 20: layers = [1, 2, 4, 1] elif num_layers == 64: layers = [3, 7, 16, 3] else: raise ValueError('sphere' + str(num_layers) + " IS NOT SUPPORTED! (sphere20 or sphere64)") filter_list = [3, 64, 128, 256, 512] block = Block self.layer1 = self._make_layer(block, filter_list[0], filter_list[1], layers[0], stride=2) self.layer2 = self._make_layer(block, filter_list[1], filter_list[2], layers[1], stride=2) self.layer3 = self._make_layer(block, filter_list[2], filter_list[3], layers[2], stride=2) self.layer4 = self._make_layer(block, filter_list[3], filter_list[4], layers[3], stride=2) self.fc = nn.Linear(512 * 7 * 7, feature_dim) self.last_bn = nn.BatchNorm1d(feature_dim) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): if m.bias is not None: nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) else: nn.init.normal_(m.weight, 0, 0.01) def _make_layer(self, block, inplanes, planes, num_units, stride): layers = [] layers.append(nn.Conv2d(inplanes, planes, 3, stride, 1)) layers.append(nn.BatchNorm2d(planes)) layers.append(nn.PReLU(planes)) for _ in range(num_units): layers.append(block(planes)) return nn.Sequential(*layers) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = x.view(x.size(0), -1) x = self.fc(x) x = self.last_bn(x) return x if __name__ == '__main__': x = torch.Tensor(2, 3, 112, 112) net = SphereNet(num_layers=64, feature_dim=512) out = net(x) print(out.shape)