import subprocess import os import gradio as gr import json from utils import * from unidecode import unidecode from transformers import AutoTokenizer description = """
Duplicate Space
## ℹ️ How to use this demo? 1. Select a music file in MusicXML (.mxl) format. 2. Click "Submit" and wait for the result. 3. It will return the most similar music score from the WikiMusictext dataset (1010 scores in total). ## ❕Notice - The demo only supports MusicXML (.mxl) files. - The returned results include the title, artist, genre, description, and the score in ABC notation. - The genre and description may not be accurate, as they are collected from the web. - The demo is based on CLaMP-S/512, a CLaMP model with 6-layer Transformer text/music encoders and a sequence length of 512. ## 🎵👉🎵 Similar Music Recommendation A surprising capability of CLaMP is that it can also recommend similar music given a piece of music, even though it is not trained on this task. This is because CLaMP is trained to encode the semantic meaning of music, and thus it can capture the similarity between music pieces.We only use the music encoder to extract the music feature from the music query, and then calculate the similarity between the query and all the pieces of music in the library. """ CLAMP_MODEL_NAME = 'sander-wood/clamp-small-512' QUERY_MODAL = 'music' KEY_MODAL = 'music' TOP_N = 1 TEXT_MODEL_NAME = 'distilroberta-base' TEXT_LENGTH = 128 device = torch.device("cpu") # load CLaMP model model = CLaMP.from_pretrained(CLAMP_MODEL_NAME) music_length = model.config.max_length model = model.to(device) model.eval() # initialize patchilizer, tokenizer, and softmax patchilizer = MusicPatchilizer() tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME) softmax = torch.nn.Softmax(dim=1) def compute_values(Q_e, K_e, t=1): """ Compute the values for the attention matrix Args: Q_e (torch.Tensor): Query embeddings K_e (torch.Tensor): Key embeddings t (float): Temperature for the softmax Returns: values (torch.Tensor): Values for the attention matrix """ # Normalize the feature representations Q_e = torch.nn.functional.normalize(Q_e, dim=1) K_e = torch.nn.functional.normalize(K_e, dim=1) # Scaled pairwise cosine similarities [1, n] logits = torch.mm(Q_e, K_e.T) * torch.exp(torch.tensor(t)) values = softmax(logits) return values.squeeze() def encoding_data(data, modal): """ Encode the data into ids Args: data (list): List of strings modal (str): "music" or "text" Returns: ids_list (list): List of ids """ ids_list = [] if modal=="music": for item in data: patches = patchilizer.encode(item, music_length=music_length, add_eos_patch=True) ids_list.append(torch.tensor(patches).reshape(-1)) else: for item in data: text_encodings = tokenizer(item, return_tensors='pt', truncation=True, max_length=TEXT_LENGTH) ids_list.append(text_encodings['input_ids'].squeeze(0)) return ids_list def abc_filter(lines): """ Filter out the metadata from the abc file Args: lines (list): List of lines in the abc file Returns: music (str): Music string """ music = "" for line in lines: if line[:2] in ['A:', 'B:', 'C:', 'D:', 'F:', 'G', 'H:', 'N:', 'O:', 'R:', 'r:', 'S:', 'T:', 'W:', 'w:', 'X:', 'Z:'] \ or line=='\n' \ or (line.startswith('%') and not line.startswith('%%score')): continue else: if "%" in line and not line.startswith('%%score'): line = "%".join(line.split('%')[:-1]) music += line[:-1] + '\n' else: music += line + '\n' return music def load_music(filename): """ Load the music from the xml file Args: file (Union[str, bytes, BinaryIO, TextIO]): Input file object containing the xml file Returns: music (str): Music string """ # Get absolute path of xml2abc.py script_dir = os.path.dirname(os.path.abspath(__file__)) xml2abc_path = os.path.join(script_dir, 'xml2abc.py') # Use absolute path in Popen() p = subprocess.Popen(['python', xml2abc_path, '-m', '2', '-c', '6', '-x', filename], stdout=subprocess.PIPE) result = p.communicate()[0] output = result.decode('utf-8').replace('\r', '') music = unidecode(output).split('\n') music = abc_filter(music) return music def get_features(ids_list, modal): """ Get the features from the CLaMP model Args: ids_list (list): List of ids modal (str): "music" or "text" Returns: features_list (torch.Tensor): Tensor of features with a shape of (batch_size, hidden_size) """ features_list = [] print("Extracting "+modal+" features...") with torch.no_grad(): for ids in tqdm(ids_list): ids = ids.unsqueeze(0) if modal=="text": masks = torch.tensor([1]*len(ids[0])).unsqueeze(0) features = model.text_enc(ids.to(device), attention_mask=masks.to(device))['last_hidden_state'] features = model.avg_pooling(features, masks) features = model.text_proj(features) else: masks = torch.tensor([1]*(int(len(ids[0])/PATCH_LENGTH))).unsqueeze(0) features = model.music_enc(ids, masks)['last_hidden_state'] features = model.avg_pooling(features, masks) features = model.music_proj(features) features_list.append(features[0]) return torch.stack(features_list).to(device) def similar_music_recommendation(file): """ Recommend similar music Args: file (Union[str, bytes, BinaryIO, TextIO]): Input file object containing the xml file Returns: output (str): Output string """ query = load_music(file.name) print("\nQuery:\n"+ query) with open(KEY_MODAL+"_key_cache_"+str(music_length)+".pth", 'rb') as f: key_cache = torch.load(f) # encode query query_ids = encoding_data([query], QUERY_MODAL) query_feature = get_features(query_ids, QUERY_MODAL) key_filenames = key_cache["filenames"] key_features = key_cache["features"] # compute values values = compute_values(query_feature, key_features) idx = torch.argsort(values)[-1] filename = key_filenames[idx].split('/')[-1][:-4] with open("wikimusictext.json", 'r') as f: wikimusictext = json.load(f) for item in wikimusictext: if item['title']==filename: # output = "Title:\n" + item['title']+'\n\n' # output += "Artist:\n" + item['artist']+ '\n\n' # output += "Genre:\n" + item['genre']+ '\n\n' # output += "Description:\n" + item['text']+ '\n\n' # output += "ABC notation:\n" + item['music']+ '\n\n' print("Title: " + item['title']) print("Artist: " + item['artist']) print("Genre: " + item['genre']) print("Description: " + item['text']) print("ABC notation:\n" + item['music']) return item["title"], item["artist"], item["genre"], item["text"], item["music"] input_file = gr.inputs.File(label="Upload MusicXML file") output_title = gr.outputs.Textbox(label="Title") output_artist = gr.outputs.Textbox(label="Artist") output_genre = gr.outputs.Textbox(label="Genre") output_description = gr.outputs.Textbox(label="Description") output_abc = gr.outputs.Textbox(label="ABC notation") gr.Interface(similar_music_recommendation, inputs=input_file, outputs=[output_title, output_artist, output_genre, output_description, output_abc], title="🗜️ CLaMP: Similar Music Recommendation", description=description).launch()