File size: 8,971 Bytes
7fc7f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from modelsn.med import BertConfig, BertModel, BertLMHeadModel
from modelsn.blip import create_vit, init_tokenizer, load_checkpoint

import torch
from torch import nn
import torch.nn.functional as F
from transformers import BertTokenizer
import numpy as np

class BLIP_VQA(nn.Module):
    def __init__(self,                 
                 med_config = 'configs/med_config.json',  
                 image_size = 480,
                 vit = 'base',
                 vit_grad_ckpt = False,
                 vit_ckpt_layer = 0,                   
                 ):
        """
        Args:
            med_config (str): path for the mixture of encoder-decoder model's configuration file
            image_size (int): input image size
            vit (str): model size of vision transformer
        """               
        super().__init__()
        
        self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
        self.tokenizer = init_tokenizer()  
        
        encoder_config = BertConfig.from_json_file(med_config)
        encoder_config.encoder_width = vision_width
        self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) 
        
        decoder_config = BertConfig.from_json_file(med_config)        
        self.text_decoder = BertLMHeadModel(config=decoder_config)          


    def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
        
        image_embeds = self.visual_encoder(image) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
        
        question = self.tokenizer(question, padding='longest', truncation=True, max_length=35, 
                                  return_tensors="pt").to(image.device) 
        question.input_ids[:,0] = self.tokenizer.enc_token_id
        
        if train:               
            '''
            n: number of answers for each question
            weights: weight for each answer
            '''                     
            answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device) 
            answer.input_ids[:,0] = self.tokenizer.bos_token_id
            answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)      

            question_output = self.text_encoder(question.input_ids, 
                                                attention_mask = question.attention_mask, 
                                                encoder_hidden_states = image_embeds,
                                                encoder_attention_mask = image_atts,                             
                                                return_dict = True)    

            question_states = []                
            question_atts = []  
            for b, n in enumerate(n):
                question_states += [question_output.last_hidden_state[b]]*n
                question_atts += [question.attention_mask[b]]*n                
            question_states = torch.stack(question_states,0)    
            question_atts = torch.stack(question_atts,0)     

            answer_output = self.text_decoder(answer.input_ids, 
                                              attention_mask = answer.attention_mask, 
                                              encoder_hidden_states = question_states,
                                              encoder_attention_mask = question_atts,                  
                                              labels = answer_targets,
                                              return_dict = True,   
                                              reduction = 'none',
                                             )      
            
            loss = weights * answer_output.loss
            loss = loss.sum()/image.size(0)

            return loss
            

        else: 
            question_output = self.text_encoder(question.input_ids, 
                                                attention_mask = question.attention_mask, 
                                                encoder_hidden_states = image_embeds,
                                                encoder_attention_mask = image_atts,                                    
                                                return_dict = True) 
            
            if inference=='generate':
                num_beams = 3
                question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
                question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
                model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
                
                bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
                
                outputs = self.text_decoder.generate(input_ids=bos_ids,
                                                     max_length=10,
                                                     min_length=1,
                                                     num_beams=num_beams,
                                                     eos_token_id=self.tokenizer.sep_token_id,
                                                     pad_token_id=self.tokenizer.pad_token_id, 
                                                     **model_kwargs)
                
                answers = []    
                for output in outputs:
                    answer = self.tokenizer.decode(output, skip_special_tokens=True)    
                    answers.append(answer)
                return answers
            
            elif inference=='rank':
                max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask, 
                                           answer.input_ids, answer.attention_mask, k_test) 
                return max_ids
 
                
                
    def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
        
        num_ques = question_states.size(0)
        start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
        
        start_output = self.text_decoder(start_ids, 
                                         encoder_hidden_states = question_states,
                                         encoder_attention_mask = question_atts,                                      
                                         return_dict = True,
                                         reduction = 'none')              
        logits = start_output.logits[:,0,:] # first token's logit
        
        # topk_probs: top-k probability 
        # topk_ids: [num_question, k]        
        answer_first_token = answer_ids[:,1]
        prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) 
        topk_probs, topk_ids = prob_first_token.topk(k,dim=1) 
        
        # answer input: [num_question*k, answer_len]                 
        input_ids = []
        input_atts = []
        for b, topk_id in enumerate(topk_ids):
            input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
            input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
        input_ids = torch.cat(input_ids,dim=0)  
        input_atts = torch.cat(input_atts,dim=0)  

        targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)

        # repeat encoder's output for top-k answers
        question_states = tile(question_states, 0, k)
        question_atts = tile(question_atts, 0, k)
        
        output = self.text_decoder(input_ids, 
                                   attention_mask = input_atts, 
                                   encoder_hidden_states = question_states,
                                   encoder_attention_mask = question_atts,     
                                   labels = targets_ids,
                                   return_dict = True, 
                                   reduction = 'none')   
        
        log_probs_sum = -output.loss
        log_probs_sum = log_probs_sum.view(num_ques,k)

        max_topk_ids = log_probs_sum.argmax(dim=1) 
        max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]

        return max_ids
    
    
def blip_vqa(pretrained='',**kwargs):
    model = BLIP_VQA(**kwargs)
    if pretrained:
        model,msg = load_checkpoint(model,pretrained)
#         assert(len(msg.missing_keys)==0)
    return model  


def tile(x, dim, n_tile):
    init_dim = x.size(dim)
    repeat_idx = [1] * x.dim()
    repeat_idx[dim] = n_tile
    x = x.repeat(*(repeat_idx))
    order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
    return torch.index_select(x, dim, order_index.to(x.device))