Spaces:
Runtime error
Runtime error
''' | |
* Copyright (c) 2022, salesforce.com, inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: BSD-3-Clause | |
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
* By Junnan Li | |
''' | |
import warnings | |
warnings.filterwarnings("ignore") | |
from modelsn.vit import VisionTransformer, interpolate_pos_embed | |
from modelsn.med import BertConfig, BertModel, BertLMHeadModel | |
from transformers import BertTokenizer | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import os | |
from urllib.parse import urlparse | |
from timm.models.hub import download_cached_file | |
class BLIP_Base(nn.Module): | |
def __init__(self, | |
med_config = 'configs/med_config.json', | |
image_size = 224, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) | |
def forward(self, image, caption, mode): | |
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal" | |
text = self.tokenizer(caption, return_tensors="pt").to(image.device) | |
if mode=='image': | |
# return image features | |
image_embeds = self.visual_encoder(image) | |
return image_embeds | |
elif mode=='text': | |
# return text features | |
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, | |
return_dict = True, mode = 'text') | |
return text_output.last_hidden_state | |
elif mode=='multimodal': | |
# return multimodel features | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
text.input_ids[:,0] = self.tokenizer.enc_token_id | |
output = self.text_encoder(text.input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True, | |
) | |
return output.last_hidden_state | |
class BLIP_Decoder(nn.Module): | |
def __init__(self, | |
med_config = 'configs/med_config.json', | |
image_size = 384, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
prompt = 'a picture of ', | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_decoder = BertLMHeadModel(config=med_config) | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 | |
def forward(self, image, caption): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) | |
text.input_ids[:,0] = self.tokenizer.bos_token_id | |
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100) | |
decoder_targets[:,:self.prompt_length] = -100 | |
decoder_output = self.text_decoder(text.input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
labels = decoder_targets, | |
return_dict = True, | |
) | |
loss_lm = decoder_output.loss | |
return loss_lm | |
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0): | |
image_embeds = self.visual_encoder(image) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts} | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) | |
input_ids[:,0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
#nucleus sampling | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs) | |
else: | |
#beam search | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt):]) | |
return captions | |
def blip_decoder(pretrained='',**kwargs): | |
model = BLIP_Decoder(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
assert(len(msg.missing_keys)==0) | |
return model | |
def blip_feature_extractor(pretrained='',**kwargs): | |
model = BLIP_Base(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
assert(len(msg.missing_keys)==0) | |
return model | |
def init_tokenizer(): | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) | |
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) | |
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
return tokenizer | |
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): | |
assert vit in ['base', 'large'], "vit parameter must be base or large" | |
if vit=='base': | |
vision_width = 768 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, | |
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0 or drop_path_rate | |
) | |
elif vit=='large': | |
vision_width = 1024 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, | |
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0.1 or drop_path_rate | |
) | |
return visual_encoder, vision_width | |
def is_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def load_checkpoint(model,url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location='cpu') | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location='cpu') | |
else: | |
raise RuntimeError('checkpoint url or path is invalid') | |
state_dict = checkpoint['model'] | |
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) | |
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): | |
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], | |
model.visual_encoder_m) | |
for key in model.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape!=model.state_dict()[key].shape: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict,strict=False) | |
print('load checkpoint from %s'%url_or_filename) | |
return model,msg | |