app change
Browse files
app.py
CHANGED
@@ -1,7 +1,27 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import onnxruntime as rt
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch, json
|
5 |
|
|
|
|
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
8 |
+
|
9 |
+
with open("label_types_encoded.json", "r") as fp:
|
10 |
+
encode_genre_types = json.load(fp)
|
11 |
+
|
12 |
+
inf_session = rt.InferenceSession('food-classifier-quantized.onnx')
|
13 |
+
input_name = inf_session.get_inputs()[0].name
|
14 |
+
output_name = inf_session.get_outputs()[0].name
|
15 |
+
|
16 |
+
|
17 |
+
def classify_news_label(article):
|
18 |
+
input_ids = tokenizer(article)['input_ids'][:512]
|
19 |
+
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
20 |
+
logits = torch.FloatTensor(logits)
|
21 |
+
probs = torch.sigmoid(logits)[0]
|
22 |
+
return dict(zip(label, map(float, probs)))
|
23 |
+
|
24 |
+
|
25 |
+
label = gr.outputs.Label(num_top_classes=6)
|
26 |
+
iface = gr.Interface(fn=classify_news_label, inputs="text", outputs=label)
|
27 |
+
iface.launch(inline=False)
|