|
import streamlit as st |
|
from langchain.llms import HuggingFaceEndpoint |
|
|
|
|
|
def load_answer(question): |
|
llm = HuggingFaceEndpoint( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.2") |
|
|
|
if question.strip() == "": |
|
return "Question cannot be empty. Please enter a valid question." |
|
|
|
answer = llm.invoke(question) |
|
return answer |
|
|
|
|
|
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") |
|
st.header("LangChain Demo by Sankar") |
|
|
|
|
|
def get_text(): |
|
input_text = st.text_input("You: ", key="input") |
|
return input_text |
|
|
|
user_input = get_text() |
|
|
|
submit = st.button('Generate') |
|
|
|
|
|
if submit: |
|
if user_input.strip() == "": |
|
st.subheader("Answer:") |
|
st.write("Question cannot be empty. Please enter a valid question.") |
|
else: |
|
response = load_answer(user_input) |
|
st.subheader("Answer:") |
|
st.write(response) |
|
|