import streamlit as st from langchain.llms import HuggingFaceEndpoint # Function to return the response def load_answer(question): llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.2") # Model link: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 if question.strip() == "": return "Question cannot be empty. Please enter a valid question." answer = llm.invoke(question) return answer # App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo by Sankar") # Gets the user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() submit = st.button('Generate') # If generate button is clicked if submit: if user_input.strip() == "": st.subheader("Answer:") st.write("Question cannot be empty. Please enter a valid question.") else: response = load_answer(user_input) st.subheader("Answer:") st.write(response)