import streamlit as st import tensorflow as tf from PIL import Image import numpy as np model = tf.saved_model.load('saved_model/embryo_classifier') IMG_SIZE = (300, 300) def preprocess_image(image): image = image.resize(IMG_SIZE, Image.LANCZOS) inp_numpy = np.array(image)[None] inp = tf.constant(inp_numpy, dtype='float32') return inp st.set_page_config(page_title="Embryo Quality Assessment", layout="wide") st.title("Embryo Quality Assessment") st.write(""" Upload an embryo image to classify its quality. The model will predict the quality of the embryo as either Low, Medium, or High. """) uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert('RGB') resized_image = image.resize((150, 150)) st.image(resized_image, caption='Uploaded Image.', use_column_width=False) st.write("Classifying...") processed_image = preprocess_image(image) class_scores = model(processed_image)[0].numpy() predicted_class = class_scores.argmax() classes = ['Low Quality', 'Medium Quality', 'High Quality'] # Adjust according to your classes st.write(f"**Prediction:** {classes[predicted_class]}") st.write(f"**Confidence:** {np.max(class_scores) * 100:.2f}%") st.write("**Confidence scores for all classes:**") for i, score in enumerate(class_scores): st.write(f"{classes[i]}: {score * 100:.2f}%") st.markdown(""" --- *Created by [Your Name](https://your-link.com)* """)