File size: 1,551 Bytes
d18c50a 1a7dd8c d18c50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
import torchaudio
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Load the fine-tuned model and processor
model_name_or_path = "sarahai/uzbek-stt-3" # Replace with your model's path
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path)
# Function to preprocess and transcribe audio
def preprocess_audio(file):
speech_array, sampling_rate = torchaudio.load(file)
# Resample to 16 kHz if necessary
if sampling_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
speech_array = resampler(speech_array)
speech_array = speech_array.squeeze().numpy()
return speech_array
def transcribe_audio(speech_array):
input_values = processor(speech_array, return_tensors="pt", sampling_rate=16000).input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0])
return transcription.replace("[UNK]", "'")
# Streamlit interface
st.title("Speech-to-Text Transcription App")
st.write("Upload an audio file to transcribe.")
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if audio_file is not None:
# Preprocess and transcribe
speech_array = preprocess_audio(audio_file)
transcription = transcribe_audio(speech_array)
st.write("Transcription:")
st.text(transcription)
|