import streamlit as st import torchaudio import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Load the fine-tuned model and processor model_name_or_path = "sarahai/uzbek-stt-3" # Replace with your model's path processor = Wav2Vec2Processor.from_pretrained(model_name_or_path) model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path) # Function to preprocess and transcribe audio def preprocess_audio(file): speech_array, sampling_rate = torchaudio.load(file) # Resample to 16 kHz if necessary if sampling_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) speech_array = resampler(speech_array) speech_array = speech_array.squeeze().numpy() return speech_array def transcribe_audio(speech_array): input_values = processor(speech_array, return_tensors="pt", sampling_rate=16000).input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0]) return transcription.replace("[UNK]", "'") # Streamlit interface st.title("Speech-to-Text Transcription App") st.write("Upload an audio file to transcribe.") audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) if audio_file is not None: # Preprocess and transcribe speech_array = preprocess_audio(audio_file) transcription = transcribe_audio(speech_array) st.write("Transcription:") st.text(transcription)